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ABSTRACT: We investigate the ability of algorithms developed for re-
verse engineering of transcriptional regulatory networks to reconstruct
metabolic networks from high-throughput metabolite profiling data. For
benchmarking purposes, we generate synthetic metabolic profiles based
on a well-established model for red blood cell metabolism. A variety
of data sets are generated, accounting for different properties of real
metabolic networks, such as experimental noise, metabolite correlations,
and temporal dynamics. These data sets are made available online. We
use ARACNE, a mainstream algorithm for reverse engineering of tran-
scriptional regulatory networks from gene expression data, to predict
metabolic interactions from these data sets. We find that the perfor-
mance of ARACNE on metabolic data is comparable to that on gene
expression data.
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THE NEED FOR BENCHMARK DATA

In recent years, high-throughput (HTP) microarray profiling has yielded
large data sets that characterize the simultaneous activities of essentially all
genes in a cell. These data sets have been used successfully to reverse-engineer
(RE) cellular transcriptional regulatory networks.1–3 Similar developments are
expected in the emerging field of metabolomics, in which sensitive HTP mea-
surements of (relative or absolute) concentrations of many metabolites in a
sample of cells are becoming possible.4–6 Anticipating the resulting data sets,
there is a strong interest in development of computational tools that, unlike
more traditional approaches based on sequence information7 or chemical reac-
tivity and conservation laws,8,9 would use the relevant HTP data to expand our
knowledge of metabolic networks, which is extensive but incomplete. Because
metabolic networks share features with transcriptional regulatory networks, it
is tempting to transfer successful methods developed in the context of tran-
scriptional networks, such as those in Basso et al.,1 Faith et al.,2 Bussemaker
et al.,3 and Margolin et al.,10 to inference of metabolic networks.

An advantage of transferring these methods is that only minimal modifi-
cations are required to the very extensive RE code base. However, it is not
obvious that the existing methods will perform well on metabolic networks.
Despite the superficial similarity, metabolic and transcriptional networks are
quite different. In the transcriptional case, a transcription factor (parent) causes
a change in the expression of its target gene (child), without any direct effects
on its own activity. This leads to correlations among expressions of tran-
scription factors (TFs) and their targets, and these can be readily discovered
by various statistical techniques. Conversely, in metabolism, a substrate (par-
ent) is transformed into a product (child). Thus, an increase in the child’s
abundance comes at the cost of decreasing the abundance of the parent. We
therefore expect that the statistical associations in metabolic data will differ
from those in gene expression data sets in as yet unknown ways. Furthermore,
the experimental noise has a tendency to mask interactions of low-mean or
low-variance species. This has been a problem even in transcriptional analysis
(e.g., spurious interactions in the ribosomal complex1), where the expression
levels and the involved characteristic time scales of reaching steady states are
largely uniform across all genes. On the other hand, kinetic rates in a metabolic
network can vary over many orders of magnitude for different species. Thus
the time required for an organism to achieve a metabolic steady state can vary
from milliseconds to hundreds of hours.11 Furthermore, many metabolites are
short-lived and low-abundance, and a “fully expressed” metabolite can mean
anywhere from a few molecules to a few million molecules per cell, making
consideration of the measurement noise very important.

Because of these differences between transcription and metabolism, the fi-
delity of standard transcriptional RE algorithms for metabolic networks cannot
be assumed. It is therefore useful to test these methods on benchmark data that
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104 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

resemble real metabolic measurements, and for which the ground truth struc-
ture of the network is known. We are unaware of the existence of experimental
data sets of this kind, and therefore we turn to numerical simulations. Existing
synthetic data sets have focused on realistic modeling of transcriptional regula-
tion,12 not metabolism. Therefore, in this work, we undertake the task of gener-
ating synthetic benchmark metabolic data by using a published kinetic model of
red blood cell (RBC) metabolism,11 which involves 39 metabolites connected
by 44 individual reactions. These data have been made publicly available
at http://www.menem.com/∼ilya/wiki/index.php/RBC_Metabolic_Network.
We then use ARACNE, a modern transcriptional network RE algorithm, which
was developed and validated for gene expression analysis,10 to infer metabolic
interactions from these synthetic metabolic data, and we find that its perfor-
mance is comparable to that on gene expression data. The outcome of this
exercise suggests the possibility that, with minimal changes, other RE al-
gorithms designed for use on HTP gene expression data might be fruitfully
applied to metabolic data as well.

THE RBC METABOLIC BENCHMARK DATA

In generating synthetic benchmark data, our goal is not to accurately simu-
late a real system. Rather, our goal is to exercise transcriptional RE algorithms
by generating data that are complex enough to incorporate different features of
metabolism (dynamic ranges, temporal properties, correlations among chem-
ical species, noises, etc.), but are still simple enough to analyze in detail.
Specifically, we generated four data sets to account for increasingly complex
scenarios of realistic profiling of RBC metabolism (see below). As the majority
of transcriptional RE methods take steady-state abundance data as inputs, we
focused on steady-state metabolic profiling in the first three of these synthetic
data sets, and the fourth data set simulates dynamic metabolic profiling.

To generate the simulated data, we modified a publicly available Mathe-
matica workbook implementation of the RBC model.11 The model has five
parameters that can be controlled externally: the Donnan ratio, R (which de-
termines the difference in the pH inside and outside of the cell); glucose
concentration, G; total intracellular magnesium concentration, both free and
bound, Mg; intracellular inorganic phosphorus concentration, Pi; and extra-
cellular (plasma) sodium concentration, Na. For the first three data sets, these
external control parameters were sampled at random 1000 times from speci-
fied probability distributions, representing different experimental setups, and
the steady-state values of the metabolic network were found by using the
methods in the RBC workbook. In a significant number of situations (up to
30% or more, depending on the data set), the randomly selected parameters
did not lead to steady-state solutions. These samples were removed from the
data sets.
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Data Set 1 (Chemostat)

This data set simulates RBC steady-state measurements from chemostat
culture experiments. All the parameters are uncorrelated, uniformly distributed
variables, with the ranges indicated below (the numbers in parentheses are
the values of the parameters assumed in the RBC workbook model11). The
ranges were established by a literature search for conditions of various culture
experiments that did not lead to an immediate cell death. We emphasize again
that our aim is not to accurately model specific biochemical experiments—
instead, our aim is to provide test data with realistic features. Hence the crude
specification of the parameter ranges below.

1. R = 0.2. . .1.6 (0.6). The natural value of R seems to be hard to pin-
point13,14 (see also discussion of data set 2 below), but experiments on
prepared/perturbed cultures achieve R as high as 1.6.13,15 The lowest
value of 0.69 comes from Kirk et al.13 and is higher than the value
of 0.6, used by Jamshidi et al.11 However, Kemp et al.16 suggest that
the internal-to-external Pi concentration ratio (which is closely related
to R) can go down to 0.2 for pH near 8.0. We chose this value as the
lower limit on R, even though it is probably too low in the context of the
RBC (pH = 7.4). For R > 0.8, the RBC dynamic system often does not
have accessible steady-state solutions (depending on the other control
parameters).

2. G = 2.0. . .30.0 mM (5.0).17

3. Mg = 0.1. . .20 mM (2.7).15 For larger values of Mg, steady states are
hard to find, and we do not include such parameter combinations in the
data set.

4. Pi = 0.6. . .1.8 mM (1.2).16

5. Na = 100. . .200 mM (140). Identifying this parameter from culture ex-
periments is difficult since most data are about internal, rather than
plasma sodium. However, Gill et al.,18 and McDonnell et al.19 note clin-
ical cases with Na down to ∼110 and up to ∼180, in which the patient
still survived. In view of this, the range of 100–200 mM for culture
experiments seems reasonable.

Additionally, we observed that an external pH of 7.55 is normal for culture
conditions, and values down to pH = 7.015 and up to 8.016 have been recorded.

Data Set 2 (Natural)

This data set represents the variability of RBC metabolite concentrations
in blood samples from healthy humans. The control parameters are taken
as uncorrelated normal variables with means �i and standard deviations � i

(indicated as �i ± � i below), where i = 1, . . . , 5 denotes the identity of the
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parameter. We take physiologically allowable intervals found in the literature
as ± 2� around the mean.

1. R = 0.75 ± 0.1. Walser14 gives 0.825 for the normal human. The RBC
model11 uses 0.6, citing,13 which suggests R = 0.69. At the normal
pH = 7.4, Raftos et al.15 suggest that the internal-to-external Pi ratio
(and hence R) is between 0.4 and 1.0, with the median about 0.8. Given
cell preparations for all of these analyses, neither of the values may be
anatomically relevant, and the real value is likely unknown for in vivo
conditions. Hence we’ve chosen the distribution for which the mean is
roughly the average of the reported human data, and the range of the
normal data is about ± 2� around the mean.

2. G = 5 ± 0.6 mM.20,21

3. Mg = 3.3 ± 0.2 mM.15,22

4. Pi = 0.9 ± 0.15 mM. This estimate is based on Pi values between 0.6
and 1.2,16 obtained for an external pH of 7.4 (the default value of the
RBC model). Values reported in alternative sources (1.0 in Jacobasch
et al.,23 0.8 in Katz et al.,24 and 0.98 in Garay and Garrahan25) differ
from these by less than 2�. It is important to realize that the RBC
model uses intracellular concentration as the control parameter, while
most investigators20,22 focus on plasma concentrations, leading to large
discrepancies.

5. Na = 140 ± 2.5 mM.20,22 Values reported in alternative sources differ
from these by less than 2�.

Additionally, the following information was collected: normal external pH
of 7.2415 or 7.416 for an unperturbed cell.

Data Set 3 (Correlated)

This data set attempts to model the in vivo metabolite concentrations more
faithfully by incorporating physiological correlations among the controls. Us-
ing this data set, one may study effects of the correlations (and thus reduction
of the dynamic ranges of the response variables) on the performance of RE
algorithms. For most of the parameters, we were unable to find quantitative
measurements of the correlation coefficients in the literature, and instead only
trends were reported. We summarized the trends into correlation coefficients
� ij of 0 (no trend or no data available), ± 0.3 (weak correlation), and ± 0.5
(strong correlation). Then the data set was generated by sampling the control
parameters from multivariate normal distributions with means and variances
as in data set 2, and with the correlation coefficients summarized in TABLE 1.

1. Pi-R and Mg-R: The Pi-pH and R-pH correlation coefficients are −0.85
and −0.6. . .−0.76 (for different species), respectively.16 Thus, it is
reasonable to assume that the Pi-R correlation is positive and large (+0.5
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NEMENMAN et al. 107

TABLE 1. Correlation coefficients of the five control parameters of the RBC modela

R G Mg Pi Na

R −0.3 (see text) −0.515 +0.515,16 −0.326

G +0.329 −0.527 +0.326

Mg 0 −0.328

Pi −0.325

Na

aReferences used to set the values are listed as well.

in our notation). Also notice that the Donnan ratio should have cor-
relations of similar magnitudes with all internal ionic concentrations,
with positive/negative correlations for anions/cations, respectively. An
agreement with the Mg-R value15 is encouraging.

2. Na-R: Recall that Na is an extracellular concentration and the correlation
with R is not obvious. Nonetheless, equation 2 in Nguyen and Kurtz26

suggests a negative correlation. This, however, may be affected by fluc-
tuations of the total sodium level and of cell volumes. Therefore, we
choose a value of −0.3 for this correlation.

3. Na-G: A small positive correlation is reported in Nguyen and Kurtz.26

4. G-R: While we found no explicit data relevant for estimating this corre-
lation, G is positively correlated with Mg and Na ions, which are, in turn,
negatively correlated with R (see above). Thus, a small negative value
for the G-R correlation is assumed.

5. Na-Pi: Garay and Garrahan25 suggest strong positive pair-wise corre-
lations between the internal Na and Na efflux, between the internal Pi
and the inverse of the Na efflux, and between the external and internal
Na. Overall, we deduce a weak negative correlation between external Na
and internal Pi; this correlation is further supported by the opposite sign
charges of these particles.

6. G-Pi: Significant negative correlation is reported by Rose and Warms.27

7. Na-Mg: Weak competitive behavior between these species is reported by
Frenkel et al.28

Data Set 4 (Evolving Parameters)

The RBC model takes up to 100 hours or more to reach a steady state.11

However, in a natural environment, the control parameters fluctuate on time
scales less than an hour. For example, it takes only tens of seconds for blood
to circulate. Further, the same drop of blood visits the liver every 20 minutes
or so, and this may completely change the concentration of various ions in
the cells and around them. Since we found no explicit data about the temporal
variability of the five control parameters in humans, we decided to model
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108 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

each of them as correlated Ornstein–Uhlenbeck processes with the means,
the standard deviations, and the species-species correlations as in data set 3,
and the correlation time � = 20 min for each process. This data set required
the most extensive changes to the RBC model Mathematica script, enabling
dynamic variation of the control parameters during the temporal evolution of
the system. The resulting time-series data represent 20 hours of evolution of
the RBC model, sampled every 10 sec (for a total of 7201 samples); researchers
may subsample the series and/or shorten it to better match the sampling scheme
of an actual experiment. This data set is designed to test the application of
network reconstruction to non-equilibrated time-series data.

NOISE

We simulate experimental errors for each metabolite concentration by
adding Gaussian zero-mean random noise to the output of RBC model. The
noise variance is given by A2 + B2x2, where x is the abundance, and A and B
describe the contribution of the absolute and the relative noise components.
Each of the four simulated data sets is available from our web site with a
multitude of A and B values. This noise model is suitable for transcriptional
data,30 and here we assume it is relevant for metabolic data as well. However,
specialized noise studies will have to be performed on real experimental data,
once available, to verify this model. Notice, in particular, that this model does
not take into the account errors that may emerge due to the overlap of peaks
in mass spectrometry–based metabolite profiling.

REVERSE ENGINEERING OF METABOLIC NETWORKS
WITH ARACNE ALGORITHM

Using our simulated metabolic data sets, we tested whether the ARACNE
algorithm10 could be used for analysis of metabolic networks.

Like many other network reconstruction methods, ARACNE models depen-
dencies among activity variables (e.g., gene expressions or metabolite concen-
trations), {gi}, as probabilistic, defined by an unknown probability distribution
P({gi}). A probabilistic description reflects the effects of unobserved molecu-
lar species and of experimental noise. A bona fide biological interaction corre-
sponds to a nonzero statistical dependency between activity profiles, measured
by the mutual information I (gi, gj) = 〈log P(gi, gj)/P(gi)P(gj)〉. Evaluating
the mutual information and identifying its value above a certain threshold with
an interaction is the basis of the relevance networks (RN) method.31 However,
as signals propagate through the networks, many non-interacting species also
become correlated and result in a positive I (e.g., two non-interacting targets
of the same TF may be highly statistically dependent). This is a major problem
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NEMENMAN et al. 109

for most RE algorithms. To isolate statistical interactions that have the high-
est chance to correspond to real biological interactions, ARACNE then uses
the data processing inequality (DPI)10 after statistically significant values of
the mutual information have been identified. The DPI states that if stochastic
variables g1 and g3 interact only through a third one, g2, then I (g1, g3) ≤ min
[I (g1, g2);I (g2, g3)]. Thus ARACNE analyzes each gene triplet and desig-
nates the link with the lowest MI value as indirect. To minimize the effect of
incorrect estimations of the MI, this designation is made only when a link is
at least �% below the second weakest one. For � ∼ 5 . . . 15%, the method has
been validated in synthetic10 and in vitro1 transcriptional networks.

To establish a metric for the fidelity of a reconstruction, we note that the
RBC interaction network is specified by a system of first-order differential
equations dxi/dt = f ({x j∈Ne(i)}), where Ne(i) is a set of neighbors of the
node i, including all immediate parents, children, and modulators (effectors)
of the reactions. Thus, the steady-state probability distribution is P(i | rest
of network) = P(i |Ne(i)), which corresponds to linking metabolites in the
interaction graph to all of their neighbors.10 This results in a “gold standard”
adjacency matrix with 107 pair-wise interactions among metabolites, to which
the ARACNE reconstruction is to be compared.

As a first check, we reconstructed the RBC metabolic network using just
19 conditions from data set 1 (� = 0). ARACNE was applied using default
parameter values.32 A total of 14 interactions are predicted, 11 of which are
substantiated by the model; this is a recall of 10% (14 out of 107) at a precision
of 78% (11 out of 14). We then performed a systematic study using data set
1 with added measurement noises of different levels, modeling real experi-
ments. For each run, we fine-tuned the kernel width,10,32 an internal ARACNE
parameter essential for estimation of the mutual information. In addition, we
removed metabolites for which the variance across different steady states was
comparable to that due to experimental noise (establishing interactions of such
metabolites is impossible by any statistical method). All indirect interactions
mediated by the deleted metabolites were then considered to be direct in the
validation. For a small and dense network, like the RBC one, where 14% of all
metabolite pairs are connected by interactions, the node removal sets a limit
on realistic values of the noise: at high noise variance, the network becomes
a small and almost fully connected cluster, making precision of the algorithm
artificially high.

Precision vs. recall curves (PRCs) for noisy and noiseless data and for two
different DPI tolerance values corresponding to the RN and the ARACNE
algorithms are shown in FIGURE 1. These curves are generated by adjusting the
significance threshold for mutual information estimation so that metabolite
pairs with a mutual information below the threshold are not allowed to par-
ticipate in an interaction. Higher thresholds decrease the number of putative
interactions, which eliminates most of the false positives, thus increasing the
precision. Lower thresholds admit more pairs for consideration, and lead to
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FIGURE 1. Precision vs. recall curves for different noise levels (thick lines, no noise;
thin lines, A = 0.001, B = 0), indexed by the number of nodes with the variance above the
experimental noise (39 and 29, respectively). Dashed lines were constructed with the DPI
tolerance of 100% (no DPI applied, equivalent to the relevance networks algorithm), and
solid lines have 0% DPI tolerance (pure ARACNE algorithm). Curves corresponding to
other values of the tolerance generally fall between these two extremes. At recall of 1.0, the
precision is 14% and 22% for thick/thin lines, respectively, and it corresponds to 107/88
true positives out of 741/406 possible metabolite pairs, all indexed as putative interactions
if no DPI is applied, and if all mutual information values are treated as significant.

higher recalls. Because the RBC network is small, dense, and loopy, we expect
the precision to drop quickly as the recall increases, as seen in FIGURE 1. Fur-
ther, because random assignment of interaction edges leads to precisions of
15–20%, only the top left corner of FIGURE 1 shows significant improvement
over random guessing.

The most significant aspect of FIGURE 1 is that, for all curves, there is always
a range with a non-negligible recall and with precision ∼1. Thus the algorithms
can be tuned to produce a (small) number of predictions that are highly likely to
be true. Furthermore, in the relevant region of high precision, the low tolerance
(ARACNE) lines are substantially higher than the high tolerance (RN) ones.
Just as in the case of transcription,10 this indicates an improvement from using
ARACNE over RNs on metabolic data. Thus, a minimally modified ARACNE
algorithm can be used to accurately predict metabolic interactions.

In FIGURE 2, we compare how smaller variability and correlations in the
external control parameters affect the validity of the reconstruction. These
effects can be observed only for large noise levels, which cause the noise to
be larger than the signal for some metabolites. Here we used a noise level
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FIGURE 2. Precision vs. recall curves for data sets with different distributions of the
control parameters and the same noise (A = 0.01, B = 0). For the three data sets, the
number of true interactions (chance precision) is 32%, 35%, and 34% of the total number
of possible metabolite pairs. Note unconventional scaling of the axes.

such that the effective number of nodes in data set 1 (chemostat) is 19.
At this noise level, both data sets, 2 and 3 (natural and correlated) have a
smaller number of effective nodes (16 and 17, respectively), implying that
they have a smaller variability of responses. The correlated data set has more
effective nodes than the natural one, implying that parameter correlations
are synergistic in their effect on variability of responses. At first glance, the
natural data set PRC seems to indicate the best performance. However, the
effective network is smaller for this data set and the random-chance preci-
sion (35%) is higher. By comparison, the chemostat network has a smaller
random-chance precision (32%) than the correlated one (34%), even though
its PRC is higher. Overall, the results imply that the decreased response vari-
ance and/or spurious correlations among metabolites introduced by corre-
lations among control parameters hinder reverse engineering of metabolic
interactions.

Finally, in FIGURE 3 we examine applicability of ARACNE to time-
dependent metabolic data. Specifically, we would like to understand how
temporal correlations among subsequent samples affect reconstruction. In or-
der not to confound dynamics with the data set size, here we always reconstruct
the network from 400 samples. However, in different runs, these samples are
spaced every 10, 40, and 160 sec apart, with the temporal correlations among
subsequent samples decreasing with the dilution. For comparison, we also plot
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FIGURE 3. Precision vs. recall curves for dynamic data using 400 samples sampled at
different intervals. Steady-state reconstruction with the same number of samples is shown
for comparison. For these plots, the effective number of nodes is 37, 38, 38, and 38,
respectively. Note unconventional scaling of the axes.

reconstruction based on 400 independently sampled steady states from data
set 3. We clearly see that, while reconstruction with temporally correlated data
is possible, the corresponding PRCs are generally lower than for the steady-
state case; they also drop more sharply. However, we note that ARACNE is
designed for steady-state data, and better performance would be expected us-
ing methods that explicitly consider temporal structure in the data,3,33 As an
exception, at very large precision values, the steady-state PRC is lower than
its counterparts for some of the temporal data. While this better performance
might just be an artifact, it also hints at the existence of transient metabolite
interactions that are unobservable in steady state, and that provide useful in-
formation for reverse engineering. Finally, the relatively low initial precision
of the 10-s sampling curve might be a result of small abundance changes
between subsequent samples at fine temporal discretization—the noise might
easily mask such small changes.

CONCLUSIONS

We have generated benchmark synthetic metabolic data sets and ana-
lyzed them with ARACNE, a representative transcriptional networks reverse-
engineering algorithm. The performance of the algorithm for metabolic net-
works is comparable to that for transcriptional ones. This finding may be
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considered as a basis for an optimistic view that transcriptional networks RE
algorithms may be transferred en masse with relatively few modifications to
metabolic applications. However, this ease of transfer must be verified on a
case-by-case basis. Importantly, we now have synthetic benchmarking data
sets, which can aid in this verification. The most important limitation of the
data sets is the relatively small size of the RBC metabolic network, which
limits the ability to ascertain statistical significance of many findings. For
example, because of this problem, we cannot verify whether the MINDY algo-
rithm,34 which is an extension of ARACNE capable of elucidating interactions
that are statistically insignificant overall, but become apparent in subsets of
data, provides an advantage over the original ARACNE when applied to this
metabolic data.

The steady-state values in data sets 1–3 are ideal for application of
ARACNE, RN, and other steady-state algorithms. However, because it may
take many hours for a controlled culture to equilibrate, time-resolved assays
might enable more rapid inference of metabolic interactions. Data set 4 pro-
vides a means for testing metabolic network inference using such experiments,
and can potentially help designing efficient sampling schemes that minimize
the cost of reconstructing metabolic networks.

Finally, we notice that performance of transcriptional RE algorithms
on metabolic data can be substantially improved beyond that observed in
FIGURES 1–3. Indeed, not every biochemical reaction is possible in nature. For
example, metabolic reactions conserve mass, and, unlike the case in transcrip-
tion, this places strict limits on which species can be metabolically coupled.
Similarly, atomic species are also conserved by metabolism, which places even
more constraints on allowable reactions, akin to that reported by Kauffman
et al.8 Metabolic profiling almost always involves detailed determination of
metabolite masses, and frequently provides information about the chemical
structure of the compounds using isotopic labeling. It is, therefore, essential
to incorporate these constraints into HTP profiling-based methods, such as
ARACNE, in the future.
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