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THE BIGGER PICTURE The promise of using machine learning (ML) to extract insights from high-dimen-
sional data is tempered by the frequent presence of confounding variables. For example, models attempt-
ing to identify biomarkers of disease can be severely biased by disease-irrelevant features, such as the
physical site where an experiment is performed. While we have many tools to grapple with known con-
founders, we lack a general method to identify which of a set of potential confounders warrant debiasing.
Here, we present a simple non-parametric statistical method called the rank-to-group (RTG) score, which
identifies hierarchical confounder effects in raw data and ML-derived data embeddings. We show that
RTG scoring identifies previously unreported effects of experimental design in a public dataset and un-
covers cross-model correlated variability in a multi-phenotypic biological dataset. This approach should
be of general use in experiment-analysis cycles and to ensure confounder robustness in ML models.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
The promise ofmachine learning (ML) to extract insights from high-dimensional datasets is tempered by con-
founding variables. It behooves scientists to determine if a model has extracted the desired information or
instead fallen prey to bias. Due to features of natural phenomena and experimental design constraints,
bioscience datasets are often organized in nested hierarchies that obfuscate the origins of confounding ef-
fects and render confounder amelioration methods ineffective. We propose a non-parametric statistical
method called the rank-to-group (RTG) score that identifies hierarchical confounder effects in raw data
and ML-derived embeddings. We show that RTG scores correctly assign the effects of hierarchical con-
founders when linear methods fail. In a public biomedical image dataset, we discover unreported effects
of experimental design. We then use RTG scores to discover crossmodal correlated variability in a multi-
phenotypic biological dataset. This approach should be generally useful in experiment-analysis cycles and
to ensure confounder robustness in ML models.
INTRODUCTION

The practice of training a model that maps high-dimensional

input objects (such as biomedical images) to target labels (e.g.,

diseased versus healthy) and subsequently quantifying model

performance to identify biomarkers or disease phenotypes is

of substantial interest in multiple fields of diagnostic medi-

cine.1–6 However, recent studies have shown that disease-irrel-

evant features, such as the physical site where an experiment is

performed6 or the sample preparation protocol,7 can severely
This is an open access article under the CC BY-N
bias these models. In these examples, ‘‘site’’ and ‘‘protocol’’

are potentially confounding discrete variables (confounders),

whose values are additional confounder labels that accompany

the target labels for each data point.

Many debiasing strategies exist to mitigate confounding ef-

fects on machine learning (ML) models including methods for

(1) a priori balancing of datasets with respect to confounders

(e.g., matching),8 (2) post hoc correction of datasets to reduce

bias (e.g., restriction, stratification, harmonization, decorrela-

tion),9–11 and (3) incorporating bias resilience during model
Patterns 3, 100451, April 8, 2022 ª 2022 The Author(s). 1
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B Figure 1. Hierarchical confounders and the

RTG score

(A) An example data hierarchy drawn from the

field of stem cell biology. A typical modeling goal

would be to predict the target label (healthy

versus diseased) of a data sample. However,

every data point would also be accompanied by

potential confounder labels ‘‘clone’’ (i.e., stem cell

line) and ‘‘donor’’ (i.e., human subject from whom

a clone is derived). Clone and donor are orga-

nized in a nested hierarchy: all data points that

share the same clone label also share the same-

donor label.

(B) Role of confounder analysis in the iterative

cycle of experimental data collection and model

building with ML. The degree to which potential

confounders confer structure to the raw data or

data embeddings can inform both the experi-

mental design used to collect more data and the

modeling framework used to analyze the data.

Model deployment should depend on confirma-

tion of successful debiasing.

(C) Schematized data where donor is represented

by color and clone by shape. The data are either

unbiased by these variables (top left), biased by

donor alone (top right), biased by clone alone

(bottom left), or biased by both donor and clone

(bottom right). Confounders can group the data.

For example, for donor-biased data (top right),

the data are clustered by color, but within a

cluster no structure is conferred by shape.

(D) Steps illustrating the computation of the rank-

to-group (RTG) score for donor (i.e., color), which

we notate as RTGD. See algorithm 1 in experi-

mental procedures for full details. Step 1: a query

data point q is selected and the distances from

the query to all other data points are calculated

(as schematized by the arrows). Step 2: the data

are ordered by their distances to the query. Step

3: pairs of points are evaluated where one point

shares the same donor as the query and the other

does not. The query score UD
q for query q is the

fraction of such pairs for which the same-donor

point is closer to the query than the different

donor point. In this example, four points (in blue)

share the same donor as the query, while five (in gray) do not, yielding 20 possible pairs. Of these, one is out of order—the pair marked with the red

arrows—giving a query score of UD
q = 0:95. Finally, repeating steps 1–3 for all possible queries and then averaging all query scores UD

q gives the value of

RTGD (steps 4 and 5).
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training.12–15 However, while we have many tools to grapple with

known confounders, we are lacking a general method to identify

which variables in a set of potential confounders warrant

debiasing.

A particular challenge is the attribution of bias to hierarchically

organized nested confounders—confounders for which all data

points that share a lower-level confounder label also share the

same higher-level confounder label. For example, in induced

pluripotent stem cell (iPSC) culture, multiple stem cell lines

(‘‘clones’’) can be derived from the same human subject

(‘‘donor’’) (Figure 1A). Donors differ due to genetic variation;

clones are also known to differ through the biological underpin-

nings of clone-to-clone variability, which remain an active area of

research.16–18 Such a confounder hierarchy is nested because

each clone can only belong to a single donor. A typical linear

approach to isolating the effect of a specific confounder is to
2 Patterns 3, 100451, April 8, 2022
compare models that fit the data with and without using the

confounder of interest, i.e., by subtracting the variance ex-

plained by a model that excludes the confounder from the vari-

ance explained by a full model. However, for nested confounders

this quantity will always be zero, because the lower-level label

(e.g., clone) confers perfect knowledge of the higher-level label

(e.g., donor), rendering this technique useless (Figure S1A).

Alternatively, one can assess for bias by computing the perfor-

mance of linear decoders that predict confounder labels from

data. This approach can work in the setting of nested con-

founders, but—unlike with calculations of variance explained—

provides no concept of effect size: the prediction accuracy of

two different confounders may be unmoored from the amount

of structure they confer to the data (Figure S1B). Beyond linear

methods, probabilistic graphical models are in theory purpose

built for characterizing the effects of an interacting set of
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variables, including hierarchically organized ones, but they

require assumptions about the data-generating process as well

as advanced Bayesian inference methods in non-conjugate set-

tings which may not scale well to high dimensions.19 Other

nonlinear techniques, such as neural networks, may be able to

determine the effects of nested confounders, but they are sensi-

tive to hyperparameter settings that may work for establishing

the bias conferred by one confounder but not another, and

thus cannot be deployed as a general method. One solution to

dealing with a set of potential confounders is simply to apply de-

biasing strategies with respect to all such variables and test for

improved model performance. However, if data are limited,

model building expensive, or the relationships between con-

founders complex—and all three are often true in biology—this

brute force approach is infeasible. Instead, a technique that

does not suffer from the limitations articulated above and that

can be used to quickly score the importance of potential con-

founders, including nested confounders, is needed.

Consider Figure 1C, which shows datasets with and without

biasing by donor, clone, or both. Linear analysis would correctly

declare that the data in the top right panel are biased by donor,

but would also identify the data in the bottom left panel as donor

dependent despite those data being constructed to be biased by

clone alone. This is because the combined set of blue circles and

triangles in this panel has substantially lower variance than the

data as a whole as a result of the nested dependency between

clone and donor. To correctly determine if donor confers struc-

ture beyond that determined by clone alone, we require a

method that can disambiguate nested confounders. We could

then use such amethod to (1) inform the design of the next round

of experiments to minimize bias, (2) guide data debiasing

methods, or (3) build models that explicitly account for known

biases (Figure 1B).

Here, we provide a novel non-parametric statistical method for

scoring the degree to which data is structured by a potential

confounder, the rank-to-group (RTG) score, which relies solely

on similarity measures between data points. Thus, the RTG

score is applicable both to raw data and to the embeddings

that result fromMLmodels. This method has a natural extension

for handling nested confounders.

In the following sections, we describe the details of the RTG

score method, provide analytic results for simple scenarios,

compare it with linear analysis, and demonstrate how RTG anal-

ysis can be used to guide data collection and modeling deci-

sions. We then apply our approach to two real-world datasets.

First, we analyze a large public dataset of images of cultured

cells20 and reveal that some features of the experimental design

strongly bias the results. We furthermore show that linear tech-

niques fail to discover these confounding effects. Next, we

compare RTG analyses of a multi-modal dataset from patient-

derived iPSC cultures21 to interrogate the effects of donor, clone,

and batch, as well as their interactions. We show that these

potential confounders differentially bias the data, but that their

relative effects are conserved across three highly disparate mo-

dalities of biological measurement: quantitative PCR, bright-field

microscopy, and single-cell RNA sequencing. The general appli-

cability of our approach to datasets with complex confounder

hierarchies makes it of potentially broad utility when using ML

techniques to interrogate large-scale real-world datasets.
RESULTS

The RTG score is a measure of the degree to which a potential

confounder confers structure on—or biases—a dataset. A score

of 0.5 means that a potential confounder has no effect on the

data, while a score of 1.0 means complete confounding. The

name ‘‘rank-to-group’’ derives from the score’s computation,

which determines the relationship between the rank ordering of

the distances among data points and their confounder group

memberships. RTG scoring is non-parametric, which simplifies

its application, and it is computable whenever the following

two conditions are met. First, the data live in a metric space

with any valid distance measure between data points x and y.

For example, for N-dimensional vector data in RN, the Euclidean

distance jx --yj2 is a natural metric. Other data types that can live

in metric spaces include reals, non-negative reals, natural

numbers, text, discrete labels, tree structures, and event times,

among many others. Not only can RTG scoring be applied for

any choice of distance metric, it is identical for any two distance

metrics that preserve the order of all pairs of distances in the da-

taset. The second constraint is that each data point must be

associated with a set of labels corresponding to potential

confounders.

To compute the RTG scoreRTGA for a dataset withN samples

with respect to a potential confounder A, we proceed as follows.

First, for some ‘‘query’’ data point q, all other points are consid-

ered in pairs where one member of each pair shares confounder

label identity with the query point and the other does not. The

query score UA
q is the fraction of these pairs for which the dis-

tance from the query to the same-confounder data point is less

than the distance to the different-confounder data point (see Fig-

ure 1D for an example calculation and algorithm 1 in experi-

mental procedures for details). Thus, the query score measures

the likelihood that a random data point that shares the same-

confounder label as the query is closer to it than a random

data point that does not. We use the variable ‘‘U’’ because the

query score is identical to the area under the curve of the

receiver-operator characteristic curve (ROC AUC) computed

via the U statistic of an ordinal statistical test (Mann-Whitney U

test22) that compares two sets of distance measurements: (1)

from the query to data that share the query’s confounder label

and (2) from the query to data with different-confounder labels.

(Of note the ROC AUC interpretation requires that the distances

between a query point and all others can be ordered. This adds

an additional mild constraint on the choice of distance metric.

Namely, that dðx; aÞ<dðx;bÞ and dðx;bÞ<dðx;cÞ implies dðx;
aÞ<dðx; cÞ. Euclidean distances in RN, for example, meet this

constraint.) The average of the query scores over all possible

queries gives the RTG score for the confounder in question:

RTGA = 1
N

P

q
UA

q . This score has a maximum of 1 when all data

points that share the same-confounder label are closer to each

other than they are to any other data point. On the other hand,

if the confounder confers no structure on the data, RTGA will

approach 0.5.

The RTG score has several useful properties. First, it is well

suited to high-dimensional data because it depends on a dis-

tance measure alone. Second, as a non-parametric rank order-

based score, it is insensitive to low noise levels that do not

change the order of data distances relative to the query, and,
Patterns 3, 100451, April 8, 2022 3
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Figure 2. Confounder analysis of hierarchical

Gaussian synthetic data

(A) Data-generation scheme. The means for each

donor and clone are sampled from Gaussian dis-

tributions as md � Nð0; s2DIÞ and mcd � Nðmd; s2CIÞ,
respectively. Then, the ith data point for each clone

is sampled as xcdi � Nðmcd ;s2X IÞ. D, C, and N are the

number of donors, clones per donor, and data

points per clone.

(B) Three extreme confounder scenarios for two-

dimensional data. Each circle represents a single

clone whose radius represents sX (i.e., the scale of

the data distribution for that clone). Each color

represents a donor. In scenario 1, the variance

differentiating donors dominates the variance

differentiating the clones within a donor, which in

turn dominates the variance of the data for each

clone (i.e., s2X � s2C � s2D). Thus, the data are

completely biased by both donor and clone. With

variances ordered as s2C � s2X � s2D (scenario 2)

and s2X � s2D � s2C (scenario 3), the data are instead

biased by donor alone or clone alone, respectively.

(C) The analytic expressions for the RTG scores for

donor, clone, and donor-exclude-same-clone for

scenarios 1, 2, and 3 from (B) when assuming many

samples per clone.

(D) The evolution of RTG scores as datasets change from scenario 1 to scenarios 2 (left) and 3 (right). RTG scores are plotted against the ratios sX/sC (left) and

sC/sD (right) while ensuring that the other constraints from (B) remain in place (i.e., that sD is large for the left panel and sX is small for the right panel). The RTG

score for donor (green) is plotted with a thin line since it does not isolate the confounding effects of a single potential confounder as opposed to the restricted RTG

score for donor-exclude-same-clone (orange) which does.

(E) Leave-one-out cross-validated R2 values of linear models fit using clone and donor identities, and—to isolate donor effects—the leave-clone-out cross-

validated R2 values for models fit using donor but only trained on C�1 clones and tested on the held-out clone. Other conventions as in (D).

Left panels in (D and E): D = 2; C = 10; sD = 400sC. Right panels: D = 50; C = 2; sX = 10�4sD. All panels: N = 100; data are ten dimensional; error bars are standard

deviations over five random samples of the data
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for the same reason, is largely insensitive to outliers. More gener-

ally, it provides useful results whenever distances are preserved

locally even if they are less reliable over long length scales—as is

the case for embeddings via UMAP, t-SNE, and other nonlinear

techniques23—since misorderings far from the query will likely

have negligible impact on the calculated RTG score. Third, it

can be applied to any embedding, regardless of interpretability.

Finally, and most importantly, this technique is easily extended

to the case of nested confounders.

When confounders are hierarchically nested (e.g., donor and

clone) the RTG score for the higher level will include effects of

the lower level, obscuring the effects of the higher level alone.

To disambiguate the effects of two hierarchically related con-

founders, we can compute a restricted RTG score RTGA\B,

which isolates the effects of higher-level confounder A by

removing the influence of lower lever confounder B. For

example, during the evaluation of the RTG score for ‘‘donor-

exclude-same-clone’’ (RTGD\C), the computation of each query

score is modified to exclude all data points that share the same

clone label as the query (see Figure S2 for an example calcula-

tion and algorithm 1 in experimental procedures for details).

This means that the query score UD C
q measures the degree

to which, for data points that do not share the same clone label

as the query, distance to the query can sort those data into

same-donor and different-donor groups. If an apparent con-

founding effect of donor is entirely attributable to clone as in

the bottom left panel of Figure 1C, RTGD\C will be at the chance

level of 0.5. Thus, the restricted RTG score allows us to disam-
4 Patterns 3, 100451, April 8, 2022
biguate clone-confounder effects from (donor and clone)-

confounder effects (bottom left and right panels of Figure 1C).

While we only consider examples of discrete valued confound-

ing variables in this article, the RTG and restricted RTG scores

can be extended to the setting of continuous valued con-

founders as described in the supplemental notes.
Analytic RTG scores for hierarchical Gaussian
mixture data
We now illustrate how RTG scores can disambiguate between

three scenarios of confounder-introduced variability by applying

them to synthetic data. We specify a three-level clone-donor-

sample hierarchical Gaussian mixture model governed by three

parameters, the variances s2D, s
2
C, and s2X (Figure 2A). The relative

sizes of these variances define the structure of the data. We

consider three extreme scenarios: (1) data fully biased by both

donor and clone, (2) data biased by donor only, and (3) data

biased by clone only (Figure 2B). For these scenarios, we can

compute simple analytic expressions for the RTG scores of clone

(RTGC) and donor (RTGD), and for the restricted RTG score of

donor-exclude-same-clone (RTGD\C). These depend only on D

andC, the number of donors and clones per donor, respectively,

assuming large numbers of samples per clone (Figure 2C). If we

interpolate from the scenario when biased by both donor and

clone to the donor-only and clone-only scenarios, we observe

that the RTG scores indeed change according to the analytic ex-

pressions (Figure 2D).



Figure 3. Analysis of robustness to noise

(A and B) Comparison between RTG scores (A) and

R2 values (B) as a function of noise. The data were

generated as per Figure 2A, but then randomly

projected to a much higher dimensional space

before being corrupted by white noise with scale

snoise. Conventions are as in Figures 2D–2E except:

D = 14; C = 2–6 (different for each donor); sD = sC =

1; sX = 0.25;N= 25; data are two dimensional before

being projected to 512 dimensions; error bars are

standard deviations over three random samples of

the data
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Our analytic results illustrate the importance of restricted RTG

scores for distinguishing between single or multiple confounder

effects. For example, for data biased only by clone (i.e., when

s2X � s2D � s2C), the analytic expression for the RTG score for

donor (RTGD) is 1=2+ 1=2C, which for small C can significantly

exceed 0.5 even though in truth there is no donor effect (right

panel of Figure 2D, green curve). However, while RTGD may be

misleading, the restricted RTG score for donor-exclude-same-

clone (RTGD\C) reports a score of 0.5, consistent with no donor

effect. If, on the other hand, donor does structure the data

beyond the effects of clone (i.e., when s2D is similar to or greater

than s2C), thenRTGD\Cwill exceed 0.5, confirming the effect (right

panel of Figure 2D, orange curve).

Linear-model confounder analysis approaches fail on
hierarchical data
Confounder discovery via linear analysis is a reasonable baseline

against which to compare the RTG method. However, as dis-

cussed in the Introduction, the standard approach of comparing

full and partial models to isolate the effect of a potential

confounder—i.e., by computing the difference in data variance

explained by models that use and do not use the confounder

of interest—fails for nested hierarchies (see Figure S1A). An

alternative linear approach that avoids this pitfall is ‘‘leave-

confounder-out’’ cross validation. To isolate the confounding ef-

fects of a variable higher in a confounder hierarchy-like donor, a

model can be constructed from donor labels using only a subset

of the data that holds out one or more clones. This model can

then be tested, in terms of the variance explained, on the held-

out data. This approach is similar to K-fold cross validation

except that the data folds, rather than being random, are defined

by the lower-level label identities (e.g., clone).

Comparison of the left panels of Figures 2D–2E shows the util-

ity of RTG scoring versus linear analysis. Data that are biased by

both donor and clone or by donor alone are indistinguishable by

R2 values but clearly differentiated when using the RTG method.

In contrast, leave-confounder-out linear analysis is useful for

disambiguating clone-biased data from data biased by both

donor and clone (Figures 2D–2E, right). Note that if the number

of labels for a held-out lower-level confounder (e.g., clone) is

two and if the structure of the data is dominated by that lower

lever confounder, then the leave-confounder-out R2 for the

higher-level variable will reach a minimum of �1 for hierarchical

Gaussian data (as seen for the orange line in Figure 1E, right).

We next consider the consequences of noise in synthetic data

with mixed donor and clone effects (Figure 3). For increasing
noise values, RTG scores are largely stable while R2 values

drop precipitously. This is because RTG scoring—a rank or-

der-based method—is unaffected by noise unless distances to

the query for data points that share and do not share confounder

labels change order (see Figure 1D; and algorithm 1 in experi-

mental procedures). In other words, as long as noise does not

result in mixing of clusters in the data that are defined by

confounder labels, RTG analysis will reveal the confounder-

dependent structure in the data. R2 values, on the other hand,

only report the structure of the data indirectly through their mea-

surement of explained variance, and thus are guaranteed to drop

as data noise increases even when the underlying clustered

structure in the data remains intact.

Model debiasing example
We can consider a simple example of using RTG analysis to

guide decision making around data collection and modeling

when building classifiers to predict disease state (as per Fig-

ure 1B). We first generate synthetic data from a mixture model

according to Figure 2A, but with the modification that half of all

donors—representing healthy human subjects—have the vector

[1, 0, ., 0]T added to their means. The other half of the donors

have their means shifted by [–1, 0,., 0]T and represent diseased

patients. As before, the confounder structure of the generated

data depends on the relative values of the variances of donor,

clone given donor, and data sample given clone (s2D, s
2
C, and s2X ).

First, we consider the case of analyzing small datasets—two

donors per disease state and two clones per donor—to deter-

mine whether or not more donors or clones should be collected

to improve the disease state prediction accuracy of a logistic

regression model. When the data are biased by donor but not

clone, adding more donors while keeping the number of clones

per donor fixed improves model performance, while adding

clones confers no benefit (Figure 4A). Conversely, for data

biased by clone but not donor, adding either clones or donors

improves model performance equally (Figure 4B). These results

demonstrate the power of RTG analysis for informing data

collection strategy. In a real-world setting, new samples of

lower-level variables (e.g., more clones) may be cheaper to

obtain than samples of higher-level variables (e.g., donors).

The confounder structure as measured by RTG scoring can

dictate howbest to use resources for data collection by clarifying

when sampling more higher-level confounders is necessary or

when adding new lower-level examples to a dataset is sufficient.

Next, we consider the case of using RTG analysis to inform

how best to improve model quality when no further data
Patterns 3, 100451, April 8, 2022 5
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Figure 4. Using RTG scores to inform data collection and debiasing

(A) Effect of training data quantity on model performance for donor confounded data. Left: RTG scores for donor, clone, and donor-exclude-same-clone before

adding new donors or clones. Right: accuracy of logistic regression models on test data. Models are trained while either increasing the number of donors in the

training dataset when holding the number of clones per donor fixed (D = 2–10 andC = 2, red) or while increasing the number of clones per donor when holding the

number of donors fixed (D = 2 and C = 2–10, purple). sD = 1; sC = 0.1.

(B) Same as (A) for clone confounded data. sD = 0.1; sC = 1.

(A and B): sX = 0.1;N= 10 for training; 10,000 test data points eachwith a unique donor and clone; 20-dimensional data; error bars are standard errors of themean

over 20 random samples of the training data.

(C) Effect of data debiasing on model performance for donor confounded data. Left: RTG scores prior to debiasing. Right: changes in model performance when

debiasing by donor or by clone. Debiasing procedure described in the text. Red lines showmean changes due to debiasing over 100 sample datasets; black lines

show 20 example datasets. The mean change due to donor debiasing was significantly different from the mean change due to clone debiasing (p < 10�4 via

resampling). sD = sC = sX = 0.3 in all dimensions except three dimensions with sD = 100; D = 4, N = 10.

(D) Same as (C) for clone confounded data.

sD = sC = sX = 0.3 except three dimensions with sC = 100; D = 2, N = 20.

(C and D): C = 2; 10,000 test data points; 10-dimensional data
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collection is possible. For this example, during data generation,

we confine s2D and s2C to only be large in a subset of data dimen-

sions (3 of 10) when biasing by donor and clone, respectively.

Then, to debias with respect to donor, for example, we deter-

mine directly from the training data which dimensions corre-

spond most strongly to donor and project the data out of those

dimensions before model fitting. In particular, for each donor,

the centroid of all the data with the same disease state was sub-

tracted from that donor’s centroid to obtain that donor’s specific

direction. Principal-component analysis was performed on the

set of donor-specific directions and the top two principal com-

ponents were identified as the donor-specific subspace. The

data were then linearly projected out of that subspace before

constructing our logistic regression classifier. Debiasing by

clone was analogous to debiasing by donor except that each

clone’s specific direction was computed from the difference

between that clone’s centroid and the centroid of the corre-

sponding donor. Test data were also projected out of the

donor-specific and clone-specific subspaces when debiasing

by donor and clone, respectively.
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For donor-biased data, debiasing by donor improved the

average prediction accuracy on test data from 72% before de-

biasing to 81%after debiasing, while debiasing by clone showed

a small negative effect (70% post-debiasing accuracy; Fig-

ure 4C). The difference between these mean changes was highly

significant (p < 10�4 by resampling; Figure S3A). For clone-

biased data, average prediction accuracy improved from 71%

before debiasing by clone to 83% afterward, while debiasing

by donor showed a smaller, although meaningful effect (79%

post-debiasing accuracy; Figure 4D). The difference between

these mean changes was also highly significant (p < 10�4; Fig-

ure S3B). These results demonstrate that, in the data-con-

strained regime, identification of confounders with large effects

can inform strategies for building higher-performing models.

Identification of confounding effects in a hierarchical
biomedical dataset
Next, we applied RTG analysis to identify confounders in a data-

set of biomedical image embeddings released in the public

domain by Recursion Pharmaceuticals.20 The raw images are
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Figure 5. RTG scores and R2 values calculated from the analysis of Recursion Pharmaceuticals’ public dataset
(A) RTG and restricted RTG scores for potential confounders: batch, plate, well position, imaging site, unique well, and whether or not a data point is from a

subedge well. Each confounder is considered without (top row) and with (other rows) the exclusion of each other confounder (except if the would-be excluded

confounder is strictly higher in the confounder hierarchy, making exclusion impossible).

(B) RTG and restricted RTG scores after the data have been collapsed along the dimension defined by the line between the centroids of the subedgewell data and

the non-subedge well data. Conventions as in (A). Errors in (A and B) are bootstrapped 95% CIs obtained by resampling with replacement.

(C) Five-fold cross-validated R2 values (top row) and leave-confounder-out cross-validatedR2 values (other rows) for the same potential confounders as in (A and

B). Negative values mean that models built while leaving out data with a particular confounder label and then tested on that left-out data are worse than a naive

model that simply predicts the mean of the whole dataset
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of cell cultures in 1,536-well plates. The data consist of 2 exper-

imental batches of 12 plates each. Each well is imaged at four

sites. The wells along the edges of the plates were not used.

Many of the wells in this dataset were treated with pharmaco-

logic agents; but, for our analysis, we chose to look only at un-

treated control wells, which were randomly dispersed across

each plate. This left a dataset of approximately 8,000 image em-

beddings that we analyzed for the confounding effects of batch

ID (1 or 2), plate ID (1–12), well position (e.g., C4), unique well ID

(e.g., C4 on plate 3 in batch 1), camera field of view within a well

or ‘‘imaging site’’ (1–4), andwhether or not an image came from a

well on the ‘‘subedge’’—the outer rim of wells that remain after

excluding the edge wells themselves.

In Figure 5A we calculated RTG scores and restricted RTG

scores for these potential confounders, and confirmed via

subsampling that our calculated scores are precise enough

to facilitate comparison between them (Figure S4). Our anal-

ysis reveals that the Recursion data are largely free of obvious

experimental pitfalls. For example, imaging site does not bias

the data (RTG 0.5) while unique well ID nearly completely

biases the data (RTG 0.95), meaning that the four images

within each well are essentially interchangeable. Furthermore,

well position alone strongly biases the data (RTG 0.76), but

well-position-exclude-same-plate (i.e., equivalent to well-po-

sition-exclude-same-unique-well) drops the RTG score to

0.58, supporting the notion that similarity between images

within the same well primarily drives the embedded data

structure. Next, we observe that the confounding effects of

plate ID (RTG 0.55) can be entirely explained by batch ID

(plate-exclude-same-batch RTG 0.5). Batch ID, on the other

hand, confers significant structure to the data (RTG 0.87),

suggesting some difference in conditions between experi-

mental batches.
However, we found that whether or not an image comes from a

well on the subedge strongly structures the data (RTG 0.73).

Indeed, subedge membership is a strong influence even across

batches (subedge-exclude-same-batch RTG 0.68). These re-

sults suggest that, despite not using the edge wells—presum-

ably to mitigate a common issue with well plates—the data em-

beddings remain highly influenced by whether or not a well is on

the outer rim of the in-use wells. To confirm this finding, we de-

biased the data with respect to the subedge well effect and then

recomputed the RTG scores. More precisely, we linearly

projected the data out of the dimension defined by the line that

connects the centroids of the data points from subedge and

non-subedge wells. The debiased data showed improved RTG

scores (Figure 5B). The residual effect of well-position-

exclude-same-plate is largely eliminated (RTG from 0.58 to

0.53) with the remaining confounding effect attributable to batch

(well-position-exclude-same-batch RTG 0.51). The confounding

effects of batch become slightly more pronounced (RTG from

0.87 to 0.9), including when excluding the effects of subedge

membership (batch-exclude-same-subedge-group RTG from

0.67 to 0.84), suggesting that simple manipulations of the data,

such as linear projections, can mitigate certain confounding ef-

fects while amplifying the effects of other confounders.

We also used this dataset to demonstrate that RTG analysis is

highly data efficient. With a random subsampling of the data, we

showedthat theSpearman’s rankcorrelationbetweenRTGscores

for full (100%) and partial (10%) datasets was 0.985 (Figure S4).

We can compare the results of RTG and linear analysis to

demonstrate the power of the RTG approach (Figures 5A and

5C). Although some of the conclusions are the same (e.g., that

images in the same well are more correlated than any other

grouping), others differ. For example, well position accounts

for more variance than batch; although, per RTG analysis, batch
Patterns 3, 100451, April 8, 2022 7
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Figure 6. RTG scores when evaluating different aspects of our previously published multi-modal dataset

For eachmodality, potential confounders batch, donor, and clone are evaluated, as well as the intersections of batch plus donor and batch plus clone. Restricted

RTG scores excluding batch, donor, and clone are also presented (unless they are higher in the data hierarchy than the confounder being evaluated).

(A–C) RTG scores computed from gene transcriptional data via qPCR, image data via bright-field microscopy, and cell-type distribution data via scRNA-seq for

iPSC-derived brain organoid cultures. Errors are bootstrapped 95% CIs obtained by resampling with replacement.
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confers more clustered structure to the data. Furthermore, the

highest R2 values only reach about half of their maximum while

the highest RTG scores are nearly maxed out. RTG analysis spe-

cifically measures the degree to which a confounder clusters

data, while R2 captures this only indirectly through a measure-

ment of variance explained. Thus, the Recursion data demon-

strate that real-world data embeddings can be both highly

clustered and noisy, suggesting the risk of a faulty conclusion

if relying on a low R2 value as a surrogate for low bias.

Most importantly, linear analysis fails to unambiguously iden-

tify the confounding effects of the subedge. The raw cross-vali-

dated R2 for subedge is near zero (0.07, last value in first row of

Figure 5C), which is in conflict with the negative R2 values ob-

tained when performing leave-subedge-group-out cross valida-

tion (bottom row). These negative values suggest that a model fit

with data from the subedge is poor at predicting the data off the

subedge and vice versa (à la the negative values in the right panel

of Figure 2E). Such conflicting results may impede discovery of

the importance of subedge if using linear confounder analysis.

Of note, leave-batch-out cross validation also results in negative

values (next to bottom row); but, unlike for the subedge, the raw

cross-validatedR2 for batch is well above zero (0.20, first value in

first row).

RTG analysis yields modality-independent confounder
effects in multi-phenotypic data
Next, we applied RTG analysis to our own multi-phenotypic da-

taset collected from human iPSC-derived brain organoids.21

These data consist of three kinds of measurements: gene

expression via qPCR, morphology via bright-field microscopy,

and cell-type distribution via single-cell RNA sequencing. For

each modality, multiple donors and clones per donor were
8 Patterns 3, 100451, April 8, 2022
used and data collection occurred in several experimental

batches. We analyzed 21 donors, 58 clones, and 17 batches

for qPCR; 10 donors, 20 clones, 7 batches for bright-field; and

14 donors, 29 clones, and 3 batches for scRNA-seq.

Our analysis (Figure 6) detects substantial confounder effects.

Both the RTG score for clone and restricted RTG score for

donor-exclude-same-clone are elevated with clone showing a

somewhat stronger effect than donor. Batch shows a weak ef-

fect on its own, but a confounder defined as the intersection of

batch and clone (i.e., where each confounder label is the union

of a batch label and a clone label) strongly biases the data.

Similar, although weaker, confounding effects are seen with

the intersection of batch and donor. These results illustrate the

utility of RTG scoring in the cycle of experimentation and data

analysis (Figure 1B). They suggest that future data collection

can be targeted at increasing the number of clones, which is typi-

cally less resource intensive than increasing donors. Further-

more, both clones and donors should be distributed across

batches to reduce the bias conferred by these variables. Finally,

these results clarify the need to use ML techniques that can

generate data embeddings that are insensitive to donor, clone,

and batch effects to aid biological interpretation.

Strikingly, we see that the RTG scores for gene expression, im-

aging, and cell-type distribution (Figures 6A–6C) are consistent

across modalities (average pairwise Spearman’s rank correla-

tion of 0.924). These results suggest that there is a common

biological origin of these phenotypic modalities; thus, the use

of cost-efficient, scalable modalities (e.g., imaging) for the

characterization of variability may be sufficient without the

need to scale-up highly resource-intensive techniques, such as

single-cell sequencing.21 This demonstrates another use for

confounder analysis in the experiment-analysis cycle: in addition
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to informing how to balance future data collection (e.g., more

clones), RTG scores can also inform resource allocation toward

specific types of assays.

DISCUSSION

Strategies for confounder analysis are currently lacking. Stan-

dard linear methods suffer from outlier sensitivity, are blind to

complex structure in data, and cannot disambiguate hierarchical-

ly nested confounders; matching and stratification strategies

suffer on high-dimensional data due to combinatorial scaling of

unmatched dimensions, and matching is impossible for a

lower-level confounder in a nested hierarchy; and Bayesian

models suffer from poor performance in high dimensions.19 In

this article we present a novel non-parametric method, the RTG

score, that addresses these issues and is easily deployable in

settings where data interpretability is limited (e.g., neural network

embeddings) and confounder sensitivity of great concern (e.g.,

models of biomedical data that are intended to support disease

diagnosis or treatment). Our method only requires (1) distance

measurements between data points and (2) confounder labels

for each data point. We have demonstrated that RTG scoring is

robust to noise and can identify the level in a confounder hierar-

chy from which a confounding effect arises even when the struc-

ture conferred by the confounder is nonlinear.

RTG scoring presents some significant advantages with

respect to leave-confounder-outmodel comparison using regres-

sion-based methods. First, as with rank-based tests, which are

only sensitive to the order of univariate quantities, RTG scoring

is ideal for ordinal distance comparisons between samples within

and across groups. Therefore, it inherits all the benefits of

methods for ordinal statistics. For instance, RTG scoring is insen-

sitive to outliers unlike regressionmethods (unless they have been

specifically adapted to be outlier robust). Second, additive noise

or random ablations, such as a few incorrect, missing, or imputed

pairwise distances, will not alter the rank order of most samples,

rendering RTG scoring more robust than alternatives. Third, RTG

scoring is designed to be agnostic to the data manifold and the

distance metric employed, and therefore makes fewer assump-

tions about the dataset than linearmethods, which expect a linear

relationship between confounders and data features. Fourth, un-

like linear methods, RTG scoring is non-parametric and therefore

has no parameters to tune (such as the specific choice of

regression model, model regularization, or stratification for cross

validation), rendering it robust to researcher-introduced bias

when assessing for confounding effects (i.e., through the biased

selection of model parameters).

An alternative to RTG scoring for the analysis of nested depen-

dency structures is hierarchical modeling (HM). However, RTG

scoring provides a number of practical benefits and differences.

First, HM requires the user to make a number of modeling

assumptions: for example, prior distributions, their hyperpara-

meters, and the dependency structure of interactions between

variables. In practice, this means that, before undertaking HM

confounder analysis, the user needs to have considerable insight

into the data-generation process, and how confounds might

interact with each other and influence the observed data. In

contrast, RTG scoring only requires the user to specify a sensible

distance metric between observations. In addition, the parame-
ters of HM must be appropriately fit to data as a prerequisite to

assessing the contributions of potentially confounding variables.

This often limits HM to only consider linear relationships between

confounding variables and data due to the practical difficulties of

fitting nonlinear models. In contrast, the RTG score is easy to

compute with no restrictions on the relationship between

putative confounders and data. These requirements of HM

pose substantial barriers to widespread adoption as a

confounder quality-control procedure.

When we apply our method to real-world biomedical datasets,

we find that it can identify confounders such as batch, edge,

donor, and clone, a point of critical importance when attempting

to derive general results from these kinds of data. Batch ef-

fects—which arise when some experimental conditions shift

despite the intention of repeating them exactly—is an example

of a confounder that iterative experimental design and careful

data collection may be able to mitigate. Donor effects may be

reduced by matching certain variables across disease and

healthy groups (e.g., gender and age), but may also require strict

protocols (e.g., sample collection and handling) to mitigate fully.

Edge effects can be partially managed by randomization and

clone effects by increasing the numbers of clones per donor,

but each of these confounders also likely requires specific

computational solutions to mitigate. Recent methods that force

data embeddings to be insensitive to certain potential con-

founders14,15 may be of particular value for debiasing data with

respect to confounders such as edge and clone. However,

they rely on minimizing the decodability of a confounder in

data embeddings, which does not address the importance of

that confounder in structuring the data (i.e., one confounder

may be more decodable than another while structuring the

data more weakly; see Figure S1B). In all of these cases, a

method such as RTG scoring is needed to identify the critical

confounders and thus inform experimental and data analysis

choices that can ultimately improve models of the data.

The RTG score is based on non-parametric ordinal tests in the

classical statistical hypothesis testing literature. Specifically, the

query score UA
q is identical to the ROC AUC computed from

the Mann-Whitney U statistic. The U test evaluates the null hy-

pothesis that, for two random samples x and y from two indepen-

dent populations, the probabilities of x > y and y > x are equal. The

query score is the effect size of a U test comparing two popula-

tions corresponding to the distances from the query to data

from either same-confounder or different-confounder groups.

To obtain a single scalar describing the whole dataset, the RTG

score is computed as the mean of the ROC AUCs of each U

test over all possible queries. An alternative method for

obtaining a single score for an entire dataset would be to pool

all distances between pairs of data points that share a same-

confounder label and pairs that do not, and then compute a

single ROCAUCcomparing these two pooled distributions. How-

ever, this approach is limited by both non-independence (two dis-

tances that share a sample are correlated) and adverse selection

(over-represented confounder labels in the dataset lead to over-

represented pairwise distances in both same-confounder and

different-confounder groups). These correlations violate the inde-

pendence assumptions required for the U test. Attempts to

grapple with them have been reported in the literature—e.g.,

Gilbert et al.24 have proposed some adjustments to standard
Patterns 3, 100451, April 8, 2022 9



included group labels do not equal Iq. When excluding

another potential confounder, the indices of the items

that share the same excluded group label Eq with item q

are removed from Sq and Dq.

Sq =
�
i : i s q and Ii = Iq ðand optionally Ei s EqÞ

�

Dq =
�
i : i s q and Ii s Iq ðand optionally Ei s EqÞ

�
:

2. Then, UI
q is defined as the fraction of pairs of items with

indices in sets Sq and Dq, where the distance from

the query item to the item whose index is in set Sq is

less than it is to the item whose index is in set Dq (with

half attribution in the case of equal distances): UI
q =
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where
��Sq

�� and
��Dq

�� are the number of elements in the sets Sq

and Dq, and d(xq,xi) is any chosen distance measure that is

valid for comparing items of our dataset.

This definition is identical to the ROC AUC computed when (1)

all the items whose indices are in the set SqWDq are sorted by

their distance to the query item and labeled with 1 and 0s if

their indices are members of Sq and Dq, respectively, and (2)

the 1 and 0s are treated as true and false positives as in stan-
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two-sample tests to correct for these effects—but herewebenefit

from the fact that, at a per-query level, distances to the query for

each group are independent, and therefore both of these limita-

tions are mitigated. Hence we use the average of query-condi-

tional Mann-Whitney U statistics to construct our RTG score.

RTG scoring is more than just a post hoc tool for comparing

whether one data embedding is better—more confounder resil-

ient—than another. Rather, we envision that the utility of our

approachwill be best realized as part of a virtuous cycle of exper-

imental design, data collection, model building, and confounder

analysis (Figure 1B). Careful attribution of confounding effects

can give confidence as to anMLmodel’s likely performance after

deployment. If, as in the example used throughout this article, a

model’s ability to identify disease state is simply due to the fact

that it has separated every clone in embedding space, there

may be considerable concern that this model has not learned

anything about disease per se. In this case, RTG analysis can

guide how best to improve confounder robustness through

both new experiments (i.e., by suggesting the highest-value

new data to collect) and updated model training approaches

(i.e., that are specifically designed to counter the effects of certain

confounders) so as to mitigate confounder influences in the next

cycle of development. The general applicability of this approach

to high-dimensional datasets with complex, potentially nested,

confounder hierarchies makes it of broad utility when using ML

techniques to interrogate large-scale real-world datasets.
dard ROC analysis. Thus we can efficiently computeUI
q from a

single pass through SqWDq after sorting.

The RTG score RTGI is simply the average of the scores UI
q

over all possible query items in the dataset (i.e., for q = 1, .,

N). Of note, for some queries, UI
q may be undefined because

either set Sq or Dq is empty. These queries are excluded

from averaging.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, G. Sean Escola (gse3@

columbia.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

In Figure 5, this paper analyzes existing data available at https://www.rxrx.ai/.

Data for Figure 6 have been deposited at Zenodo under https://doi.org/10.

5281/zenodo.5893469 and are publicly available as of the date of publication.

All original code has been deposited at Zenodo under https://doi.org/10.5281/

zenodo.5893469 and is publicly available as of the date of publication. All orig-

inal code has also been deposited in GitHub at https://github.com/herophilus/

rtg_score. Any additional information required to reanalyze the data reported in

this paper is available from the lead contact upon request.

Algorithm 1: RTG score
We start with (1) the items in our dataset xi for i = 1,.,N; (2) an

included group variable I whose confounding effect we want

to estimate; and (3) possibly an excluded group variable E

whose confounding efforts we wish to ensure are not misat-

tributed to I. Using the notation introduced in the main text,

we want to calculate the RTG score RTGI or, if E is present,

the restricted RTG score RTGI\E. For notational simplicity we

use RTGI for both scores here. Each item xi has a label for

the included group Ii and—optionally, when excluding another

confounder—a label for the excluded group Ei.

We compute UI
q, the query score for item q, as follows:

1. Define two sets: Sq consisting of the indices of the items

that share the same included group label Iq with item q,

and Dq consisting of the indices of the items whose
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SUPPLEMENTAL NOTES 
 
RTG scoring with continuous confounders 
The RTG score defined in Algorithm 1 assumes that potential confounders are discrete (e.g., 
gender). However, in many situations confounders can be continuous (e.g., age, or some 
companion measurement in an experiment such as temperature). In this case, RTG scores 
cannot be calculated as currently defined. One simple option is to discretize continuous 
confounders into bins. In this case, one needs to choose the bin boundaries which represent 
hyperparameters of the RTG score.  
 
Alternatively, we can relax the definition of the RTG score to explicitly permit continuous 
confounders. Using notation from Algorithm 1, we have: 

𝑈!" 	= 	
1

𝑊!#𝑊!$
& & (1 − 𝛿!%)(1 − 𝛿!&)𝑤%!(1 − 𝑤&!)(1 − 𝑣%!)(1 − 𝑣&!)

'

&()

'
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																																																					× {1[𝑑(𝐱! , 𝐱%) 	< 	𝑑(𝐱! , 𝐱&)] + 0.5	 × 1[𝑑(𝐱! , 𝐱%) 	= 	𝑑(𝐱! , 𝐱&)]}, 

where: 𝑤%! = exp =− |"!+""|#

,-#
>, 𝑣%! = exp =− |.!+."|#

,/#
>, 𝑊!# = ∑ (1 − 𝛿!%)𝑤%!(1 − 𝑣%!)'

%() , and 𝑊!$ =
∑ (1 − 𝛿!%)(1 − 𝑤%!)(1 − 𝑣%!)'
%() . Here, 𝐼% and 𝐸% are the values of continuous included and 

excluded confounders for data point 𝑖; 𝑤%! and 𝑣%! measure, from 0 to 1, how similar an included 
or excluded confounder value is to the corresponding confounder label of query item 𝑞; 𝛿!% is 
the Kronecker delta; and 𝑊!# and 𝑊!$ are normalizers that “count” the number of items that 
share and do not share included confounder identity with the query item after items that share 
excluded confounder identity with the query have been removed. 
 
If, for discrete confounders with labels rather than values, we define |𝐼% − 𝐼!| = 0 for 𝐼% = 𝐼! and 
|𝐼% − 𝐼!| = ∞ for 𝐼% ≠ 𝐼!, then this equation for 𝑈!"  is identical to the equation in Algorithm 1. Thus 
it is possible to mix and match continuously-valued and discrete valued confounders. 
 
When dealing directly with continuous confounders, one needs to choose the hyperparameters 
𝜎 and 𝜗 which determine the scale over which confounder variables can be said to switch from 
being of the same value to being of different values. These hyperparameters are analogous to 
the bin boundaries that need to be chosen when using the discretization strategy. Thus, either 
strategy requires determination of hyperparameters which is unnecessary for purely discrete 
confounders. Of note, it is appropriate to call these hyperparameters rather than parameters 
because they relate to the confounders 𝐼% and 𝐸% and not to the data 𝐱%. RTG analysis applied to 
data with continuous valued confounders remains nonparametric with respect to the data itself. 
 
  



 
SUPPLEMENTAL FIGURES 
 

Supplemental Figure S1. Weaknesses of encoder and decoder models for linear confounder discovery. a. 
Demonstration that linear isolation of donor confounding effects fails. Methods are as in Figure 2e, except for the 
orange line that attempts to isolate the confounding effects of donor by subtracting (i) the variance explained by a 
linear regression model trained to fit the data from clone identity alone from (ii) the variance explained by a model 
trained on both donor and clone. However, this quantity is always zero because donor and clone are hierarchically 
nested confounders (i.e., all data samples that share the same clone label also share the same donor label), meaning 
that clone always provides perfect information about donor. Conventions as in Figure 2e except that 𝜎$ = 40𝜎% for 
the left panel. b. Linear decoders as confounder detectors are insensitive to effect size. A data generative process 
was used that could parametrically switch from having the variables donor or batch primarily structure the data. 
Decoding accuracy is insensitive to this switch while RTG scores report which variable is most important. RTG scores 
were calculated as per Algorithm 1; decoding accuracies are 5-fold cross validations results using multi-class logistic 
regression (i.e., softmax) models. Chance decoding accuracy is 0.01; differences between batch and donor decoding 
accuracy is due to finite size effects. Data generation: 6-dimensional Gaussian mixture data was generated as 
follows. For dimensions 𝑛 ∈ {1,2,3}, the donor and batch means were sampled as 𝜇&' ∼ 𝑁(0,2) and 𝜇&( ∼ 𝑁(0,1). For 
dimensions 𝑛 ∈ {4,5,6}, the means were sampled as 𝜇&' ∼ 𝑁(0,2) and 𝜇&( ∼ 𝑁(0,5). The number of donors and 
batches were each 100. Then, for the 𝑖th of 1000 data points, a random donor 𝑑) and a random batch 𝑏) were chosen. 
For 𝑛 ∈ {1, . . . ,6}, the data point was sampled as [𝐱)]& ∼ 𝑁(𝜇&

'! + 𝜇&
(! , 1). For each value of 𝜎 in the plot prior to RTG 

scoring or decoder training and testing, the final three dimensions were multiplied by 𝜎 (i.e, for 𝑛 ∈ {4,5,6}, [𝐱)]& ←
𝜎[𝐱)]&. For small 𝜎, the first 3 data dimensions – with larger donor variance – primarily structure the data. For large 𝜎, 
the last 3 dimensions – with larger batch variance – primarily structure the data. RTG scoring recognizes these 
effects while linear decoding is unaffected. 
 



 
Supplemental Figure S2. Diagrams illustrating the computation of the restricted RTG score for donor-exclude-same-
clone (𝑅𝑇𝐺$\%; Algorithm 1 in Methods). Diagram 1: a query point 𝑞 is selected. Diagram 2: all data points that share 
the same clone as the query are excluded from the calculation of the query score. The arrows point to the two most 
similar non-excluded data points. Diagram 3: the data are ranked by their similarities with the query. Diagram 4: when 
evaluating pairs of points – one that shares the same donor as the query and another that does not – the fraction of 
such pairs that are ordered by their similarities with the query is the query score 𝑈+

$\% for the current query. Here, one 

out of ten possible pairs is out of order (the pair marked with the red arrow), giving a query score of 𝑈+
$\% = 0.9. The 

average over all possible queries is the restricted RTG score 𝑅𝑇𝐺$\%. 
 
 
  



 
Supplemental Figure S3. Shuffle distributions for changes from debiasing by donor versus clone. a. The mean 
difference in accuracies after and before debiasing by donor minus the mean difference in accuracies after and 
before debiasing by clone was calculated with the mean taken over 100 random samples of the data (dotted orange 
line). Then, the accuracy differences for donor and clone were shuffled 10000 times and for each shuffle the 
difference in mean differences was computed (blue histogram). No shuffles resulted in values greater than the orange 
line giving 𝑝 < 10,-. b. Same as a with the roles of donor and clone reversed. 
 
 

 
Supplemental Figure S4: Comparing RTG scores between a full dataset from Recursion Pharmaceuticals20 and a 
subsampled version of the same dataset. a. This panel is a repeat of Figure 5a. b. RTG scores after subsampling 
10% of the original data. Errors are bootstrapped 95% confidence intervals obtained by resampling with replacement. 
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