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Given recent experimental results suggesting that neural circuits may
evolve through multiple firing states, we develop a framework for
estimating state-dependent neural response properties from spike
train data. We modify the traditional hidden Markov model (HMM)
framework to incorporate stimulus-driven, non-Poisson point-process
observations. For maximal flexibility, we allow external, time-varying
stimuli and the neurons’ own spike histories to drive both the spiking
behavior in each state and the transitioning behavior between states. We
employ an appropriately modified expectation-maximization algorithm
to estimate the model parameters. The expectation step is solved by the
standard forward-backward algorithm for HMMs. The maximization
step reduces to a set of separable concave optimization problems if the
model is restricted slightly. We first test our algorithm on simulated data
and are able to fully recover the parameters used to generate the data
and accurately recapitulate the sequence of hidden states. We then apply
our algorithm to a recently published data set in which the observed
neuronal ensembles displayed multistate behavior and show that
inclusion of spike history information significantly improves the fit of
the model. Additionally, we show that a simple reformulation of the state
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1072 S. Escola, A. Fontanini, D. Katz, and L. Paninski

space of the underlying Markov chain allows us to implement a hybrid
half-multistate, half-histogram model that may be more appropriate for
capturing the complexity of certain data sets than either a simple HMM
or a simple peristimulus time histogram model alone.

1 Introduction

Evidence from recent experiments indicates that many neural systems may
exhibit multiple, distinct firing regimes, such as tonic and burst modes in
thalamus (for review, see Sherman, 2001) and UP and DOWN states in cor-
tex (Anderson, Lampl, Reichova, Carandini, & Ferster, 2000; Sanchez-Vives
& McCormick, 2000; Haider, Duque, Hasenstaub, Yu, & McCormick, 2007).
It is reasonable to speculate that neurons in multistate networks that are
involved in sensory processing might display differential firing behaviors
in response to the same stimulus in each of the states of the system; indeed,
Bezdudnaya et al. (2006) showed that temporal receptive field properties
change between tonic and burst states for relay cells in rabbit thalamus.
These results call into question traditional models of stimulus-evoked neu-
ral responses that assume a fixed, reproducible mechanism by which a
stimulus is translated into a spike train. For the case of a time-varying stim-
ulus (e.g., a movie), the neural response has often been modeled by the
generalized linear model (GLM; Simoncelli, Paninski, Pillow, & Schwartz,
2004; Paninski, 2004; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005;
Paninski, Pillow, & Lewi, 2007) where spikes are assumed to result from a
point process whose instantaneous firing rate λt at time t is given by

λt = f
(
kTst
)
, (1.1)

where f is a positive, nonlinear function (e.g., the exponential), st is the
stimulus input at time t (which can also include spike history and interneu-
ronal effects), and k is the direction in stimulus space that causes maximal
firing (i.e., the preferred stimulus or receptive field of the neuron). Since k
does not change with time, this model assumes that the response function
of the neuron is constant throughout the presentation of the stimulus (i.e.,
the standard GLM is a single-state model that would be unable to capture
the experimental results discussed above).

In this article, we propose a generalization of the GLM appropriate for
capturing the time-varying stimulus-response properties of neurons in mul-
tistate systems. We base our model on the hidden Markov model (HMM)
framework (Rabiner, 1989). Specifically, we model the behavior of each
cell in each state n as a GLM with a state-dependent stimulus filter kn,
where transitions from state to state are governed by a Markov chain whose
transition probabilities may also be stimulus dependent. Our model is an
extension of previous HMMs applied to neural data (Abeles et al., 1995;
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HMMs for Stimulus-Driven Neural Systems 1073

Seidemann, Meilijson, Abeles, Bergman, & Vaadia, 1996; Jones, Fontanini,
Sadacca, Miller, & Katz, 2007; Chen, Vijayan, Barbieri, Wilson, & Brown,
2009; Tokdar, Xi, Kelly, & Kass, 2009), and is thus an alternative to sev-
eral of the recently developed linear state-space models (Brown, Nguyen,
Frank, Wilson, & Solo, 2001; Smith & Brown, 2003; Eden, Frank, Barbieri,
Solo, & Brown, 2004; Kulkarni & Paninski, 2007), which also attempt to
capture more of the complexity in the stimulus-response relationship than
is possible with a simple GLM.

To infer the most likely parameters of our HMM given an observed
spike train, we adapt the standard Baum-Welch expectation-maximization
(EM) algorithm (Baum, Petrie, Soules, & Weiss, 1970; Dempster, Laird, &
Rubin, 1977) to point-process data with stimulus-dependent transition and
observation densities. The E-step here proceeds via a standard forward-
backward recursion, while the M-step turns out to consist of a separable
set of concave optimization problems if a few reasonable restrictions are
placed on the model (Paninski, 2004). The development of EM algorithms
for the analysis of point-process data with continuous state-space models
has been previously described (Chan & Ledolter, 1995; Smith & Brown,
2003; Kulkarni & Paninski, 2007; Czanner et al., 2008), as has the develop-
ment of EM algorithms for the analysis of point-process data with discrete
state-space models, albeit using Markov chain Monte Carlo techniques to
estimate the E-step of the algorithm (Sansom & Thomson, 2001; Chen et al.,
2009; Tokdar et al., 2009). Our algorithm, on the other hand, uses a discrete
state-space model with inhomogeneous transition and observation densi-
ties and allows the posterior probabilities in the E-step to be computed
exactly.

This article is organized as follows: Section 2 briefly reviews the ba-
sic HMM framework and associated parameter learning algorithm, and
then develops our extension of these methods for stimulus-driven mul-
tistate neurons. We also introduce an extension that may be appropriate
for data sets with spike trains that are triggered by an event (e.g., the be-
ginning of a behavioral trial) but are not driven by a known time-varying
stimulus. This extension results in a hybrid half-multistate, half-histogram
model. Section 3 presents the results of applying our model and learning
procedure to two simulated data sets meant to represent a thalamic relay
cell with different tonic and burst firing modes and a cell in sensory cor-
tex that switches between stimulus-attentive and stimulus-ignoring states.
In section 4, we analyze a data set from rat gustatory cortex in which
multistate effects have previously been noted (Jones et al., 2007), expand-
ing the prior analysis to permit spike-history-dependent effects. Our re-
sults show that accounting for history dependence significantly improves
the cross-validated performance of the HMM. In section 5 we conclude
with a brief discussion of the models and results presented in this arti-
cle in comparison to other approaches for capturing multistate neuronal
behavior.
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1074 S. Escola, A. Fontanini, D. Katz, and L. Paninski

Figure 1: An example Markov chain with three states. At every time step, the
system transitions from its current state n to some new state m (which could
be the same state) by traveling along the edges of the graph according to the
probabilities αnm associated with each edge.

2 Methods

2.1 Hidden Markov Model Review. Before we present our modifica-
tion of the HMM framework for modeling the stimulus-response relation-
ship of neurons in multistate systems, we briefly review the traditional
framework as described in Rabiner (1989). While sections 2.1.1 through
2.1.3 are not specific to neural data, we will note features of the model that
we modify in later sections and introduce notation that we use throughout
the article.

2.1.1 Model Introduction and Background. HMMs are described by two
random variables at every point in time t: the state qt and the emission
yt . Assuming that the state variable qt can take on one of N discrete states
{1, . . . , N} and makes a transition at every time step according to fixed
transition probabilities (as shown in Figure 1 for N = 3), then the states
form a homogeneous, discrete-time Markov chain defined by the following
two properties. First,

p
(
qt | q[0:t−1], y[0:t−1]

) = p(qt | qt−1), (2.1)

or the future state is independent of past states and emissions given the
present state (i.e., the Markov assumption). Thus, the sequence of states,
q ≡ (q0, . . . , qT )T, evolves only with reference to itself, without reference to
the sequence of emissions, y ≡ (y0, . . . , yT )T. Second,

αnm ≡ p(qt = m | qt−1 = n)=p(qs = m | qs−1 = n), ∀t, s ∈ {1, . . . , T},
(2.2)
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HMMs for Stimulus-Driven Neural Systems 1075

or the probability of transitioning from state n to state m is constant (ho-
mogeneous) for all time points. All homogeneous, discrete-time Markov
chains can then be completely described by matrices α with the constraints
that 0 ≤ αnm ≤ 1 and

∑N
m=1 αnm = 1. We will relax both the independence

of state transition probabilities on past emissions (see equation 2.1) and
the homogeneity assumption (see equation 2.2) in our adaptation of the
model to allow for spike history dependence and dynamic state transition
probabilities, respectively.

In another Markov-like assumption, the probability distributions of the
emission variables do not depend on any previous (or future) state or emis-
sion given the current state,

p
(
yt | q[0:t], y[0:t−1]

) = p(yt | qt), (2.3)

another assumption we will relax. The traditional HMM framework as-
sumes that the emission probability distributions, similar to the transi-
tion probability distributions, are time homogeneous. Thus, the emission
probability distributions can be represented with matrices η that have the
same constraints as the transition matrices: 0 ≤ ηnk ≤ 1 and

∑K
k=1 ηnk = 1,

where ηnk ≡ p(yt = k | qt = n) for a system with K discrete emission classes
{1, . . . , K }.

The dependencies and conditional independencies of an HMM as en-
capsulated in the Markov assumptions, equations 2.1 and 2.3, can be easily
captured in the graphical model shown in Figure 2a. As can be seen directly
from the figure, the following factorized, complete log-probability distribu-
tion over the sequence of states and the sequence of emissions is the full,
probabilistic description of an HMM:

log p(y, q) = log

(
p(q0)

T∏
t=1

p(qt | qt−1)
T∏

t=0

p(yt | qt)

)
(2.4)

or

log p(y, q | α, η,π ) = log πq0 +
T∑

t=1

log αqt−1qt +
T∑

t=0

log ηqt yt , (2.5)

where the N × N matrix α and the N × K matrix η are as defined above,
and the N-element vector π is the initial state distribution (πn ≡ p(q0 = n)).

The parameters of the model α, η, and π (or, collectively, θ ) are learned
from the data by maximizing the log likelihood. Unlike the sequence of
emissions y, which is known (e.g., experimentally measured), the sequence
of states q in an HMM is unknown (thus, “hidden”) and must be inte-
grated out of the complete log-likelihood equation to yield the marginal log
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1076 S. Escola, A. Fontanini, D. Katz, and L. Paninski

Figure 2: The graphical models corresponding to the HMMs discussed in the
text. Each node is a random variable in the system, and the edges represent
causal dependences. The hidden states {q0, . . . , qT } are the latent variables of the
models and are represented with white nodes to denote this distinction. (a) The
traditional HMM where the transition and emission probability distributions
are homogeneous. (b) The stimulus-driven HMM where the inhomogeneous
probability distributions are dependent on an external, time-varying stimulus.
(c) The stimulus and history-driven HMM where the distributions are also
dependent on the emission history (e.g., spike history) of the system.
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HMMs for Stimulus-Driven Neural Systems 1077

likelihood:

L(θ | y) ≡ log p(y | θ )

= log
∑

q

p(y, q | θ )

= log
∑

q

(
πq0

T∏
t=1

αqt−1qt

T∏
t=0

ηqt yt

)
, (2.6)

where the notation L(θ | ·) expresses the log-likelihood as a function of the
model parameters: L(θ | ·) ≡ log p(· | θ ). The sum in equation 2.6 is over all
possible paths along the hidden Markov chain during the course of the time
series. The forward-backward algorithm allows a recursive evaluation of
this likelihood, whose complexity is linear rather than exponential in T and
is the topic of the next section.

2.1.2 The Forward-Backward Algorithm. In order to find the parameters
that maximize the marginal log likelihood, we first need to be able to eval-
uate this likelihood efficiently. This is solved by the forward-backward
algorithm (Baum et al., 1970), which also comprises the E-step of the Baum-
Welch algorithm (EM for HMMs).

The forward-backward algorithm works in the following manner. First,
the “forward” probabilities are defined as

an,t ≡ p
(
y[0:t], qt = n | θ

)
, (2.7)

which is the probability of all of the emissions up to time t and the proba-
bility that at time t, the system is in state n. The forward probabilities can
be calculated recursively by

an,0 = πnηny0 (2.8)

and

an,t =
(

N∑
m=1

am,t−1αmn

)
ηnyt , (2.9)

which involves O(T) computation. Marginalizing over the hidden state in
the final forward probabilities yields the likelihood

p(y | θ ) =
N∑

n=1

an,T , (2.10)

the log of which is equivalent to equation 2.6.
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1078 S. Escola, A. Fontanini, D. Katz, and L. Paninski

To complete the algorithm, the “backward” probabilities are introduced
as

bn,t ≡ p
(
y[t+1:T] | qt = n, θ

)
, (2.11)

which is the probability of all future emissions given that the state is n at
time t. These can also be computed recursively by

bn,T = 1 (2.12)

and

bn,t =
N∑

m=1

αnmηmyt+1 bm,t+1, (2.13)

which also involves linear time complexity in T .
It is now trivial to calculate the single and consecutive pairwise marginal

probabilities of p(q | y, θ ), the posterior distribution of the state sequence
given the emission sequence, as

p(qt = n | y, θ ) = an,tbn,t

p(y | θ )
(2.14)

and

p(qt = n, qt+1 = m | y, θ ) = an,tαnmηmyt+1 bm,t+1

p(y | θ )
. (2.15)

Computing these marginals constitutes the E-step of EM, which is the sub-
ject of the next section.

2.1.3 HMM Expectation-Maximization. The EM algorithm (Dempster
et al., 1977) is an iterative process for learning model parameters with in-
complete data. During the E-step, the posterior distribution over the hidden
variables given the data and the model parameters, p(q | y, θ i ) is calculated,
where θ i is the parameter setting during iteration i . During the M-step, the
next setting of the parameters is found by maximizing the expected com-
plete log likelihood with respect to the parameters, where the expectation
is taken over the posterior distribution resulting from the E-step:

θ i+1 = arg max
θ

〈
L(θ | y, q)

〉
p(q|y,θ i ). (2.16)
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HMMs for Stimulus-Driven Neural Systems 1079

While EM is guaranteed to increase the likelihood with each iteration of the
procedure,

L
(
θ i+1 | y

) ≥ L
(
θ i | y

)
, (2.17)

it is susceptible to being trapped in local minima and may not converge as
rapidly as other procedures (Salakhutdinov, Roweis, & Ghahramani, 2003).

By substituting the complete log likelihood for an HMM, equation 2.5,
into the equation for the M-step, equation 2.16, it becomes clear why the
forward-backward algorithm is the E-step for an HMM.

〈L(θ | y, q)〉 p̂(q) =
〈

log πq0 +
T∑

t=1

log αqt−1qt +
T∑

t=0

log ηqt yt

〉
p̂(q)

= 〈log πq0〉 p̂(q) +
T∑

t=1

〈log αqt−1qt 〉 p̂(q) +
T∑

t=0

〈log ηqt yt 〉 p̂(q)

= 〈log πq0〉 p̂(q0) +
T∑

t=1

〈log αqt−1qt 〉 p̂(qt−1,qt )

+
T∑

t=0

〈log ηqt yt 〉 p̂(qt )

=
N∑

n=1

p̂(q0 = n) log πn

+
T∑

t=1

N∑
n=1

N∑
m=1

p̂(qt−1 = n, qt = m) log αnm

+
T∑

t=0

N∑
n=1

p̂(qt = n) log ηnyt , (2.18)

where p̂(q) is used in place of p(q | y, θ i ) to simplify notation. From equa-
tion 2.18, it is clear that although the complete posterior distribution over
the sequence of states p(q | y, θ i ) is not computed by the forward-backward
algorithm, the only quantities needed during the M-step are the single and
consecutive-pairwise marginal distributions given by equations 2.14 and
2.15.

In the simple case of static α and η matrices in a time-homogeneous
HMM, it is possible to derive analytic solutions for the next parameter
setting in each M-step. In the more general case, other techniques such
as gradient ascent can be employed to maximize equation 2.18, as will be
described below. However, the analytic solution of the parameter update
for the initial state distribution π is still useful in the general case. This can
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1080 S. Escola, A. Fontanini, D. Katz, and L. Paninski

be easily shown to be

πn = p̂(q0 = n). (2.19)

2.2 HMMs Modified for Stimulus-Driven Neural Response Data.
We develop an HMM to model spike train data produced by neurons
that transition between several hidden neuronal states. In the most gen-
eral case, we assume that an external stimulus is driving the neurons’ fir-
ing patterns within each state, as well as the transitions between states.
We further extend the model to allow spike history effects such as re-
fractory periods and burst activity. Although, for notational simplicity,
we initially develop the model assuming that the data consist of a sin-
gle spike train recorded from a single neuron, in section 2.2.5 we show
that this framework can be easily extended to the multicell and multitrial
setting.

2.2.1 Incorporating Point-Process Observations. In order to be relevant to
neural spike train recordings, the traditional HMM framework must be
modified to handle point-process data. We begin by redefining the emission
matrices to be parameterized by rates λn. Thus, each row of η becomes the
Poisson distribution corresponding to each state,

ηni = (λndt)i e−λndt

i !
i ∈ {0, 1, 2, . . .} , (2.20)

where λn is the nth state’s firing rate, ηni is the probability of observing i
spikes during some time step given that the neuron is in state n, and dt is
the time step duration (Abeles et al., 1995).

Similarly, for the development of our model that follows, it will be con-
venient to define the transition matrix α in terms of rates. This extension is
slightly more complicated because it is nonsensical to allow multiple tran-
sitions to occur from state n to state m during a single time step. Therefore,
we use the following model:

αnm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ′
nmdt

1 +∑l �=n λ′
nldt

m �= n

1
1 +∑l �=n λ′

nldt
m = n

, (2.21)

where λ′
nm is the “pseudo-rate” of transitioning from state n to state m.

(Throughout the article, the ′ notation is used to denote rates and param-
eters associated with transitioning as opposed to spiking. Here, for exam-
ple, λ′ is a transition rate, while λ is a firing rate.) This definition of α is
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HMMs for Stimulus-Driven Neural Systems 1081

convenient because it restricts transitions to at most one per time step (i.e.,
if m �= n) and guarantees that the rows of α sum to one. Furthermore, in the
limit of small dt, the pseudo-rates become true rates (i.e., the probabilities
of transitioning become proportional to the rates):

dt → 0 =⇒ αnm ∝ λ′
nm. (2.22)

2.2.2 Incorporating Stimulus and Spike History Dependence. In our model
we permit the spike trains to be dependent on an external, time-varying
stimulus S ≡ (s1 · · · sT ), where st is the stimulus at time t. The vector st has
a length equal to the dimensionality of the stimulus. For example, if the
stimulus is a 10 × 10 pixel image patch, then st would be a 100-element
vector corresponding to the pixels of the patch. In the general case, st can
also include past stimulus information.

We incorporate stimulus dependence in our model by allowing the tran-
sition and firing rates to vary with time as functions defined by linear-
nonlinear filterings of the stimulus st . In this time-inhomogeneous model,
we have

λ′
nm,t = g

(
k′

nm
Tst + b ′

nm

)
(2.23)

and

λn,t = f
(

kn
Tst + bn

)
, (2.24)

where k′
nm and kn are linear filters that describe the neuron’s preferred di-

rections in stimulus space for transitioning and firing, respectively, and g
and f are nonlinear rate functions mapping real scalar inputs to nonnega-
tive scalar outputs. In the absence of a stimulus (i.e., when st = 0), the bias
terms b ′

nm and bn determine the background transitioning and firing rates
as g(b ′

nm) and f (bn) respectively. It is possible to simplify the notation by
augmenting the filter and stimulus vectors according to

k ←
⎧⎪⎪⎩k

b

⎫⎪⎪⎭ (2.25)

and

st ←
⎧⎪⎪⎩ st

1

⎫⎪⎪⎭ . (2.26)

Then equations 2.23 and 2.24 reduce to

λ′
nm,t = g

(
k′

nm
Tst
)

(2.27)
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1082 S. Escola, A. Fontanini, D. Katz, and L. Paninski

and

λn,t = f
(
kn

Tst
)
. (2.28)

The kn stimulus filters for firing are the N preferred stimuli or receptive
fields associated with each of the N states of the neuron. In the degenerate
case where N = 1, the model reduces to a standard GLM model, and k1

becomes the canonical receptive field. The k′
nm stimulus filters for transi-

tioning are, by analogy, “receptive fields” for transitioning, and since there
are N(N − 1) of these, there are N2 total transition and firing stimulus filters
describing the full model. This stimulus-dependent HMM is represented
graphically in Figure 2b.

The manner in which spike history dependence enters into the rate equa-
tions is mathematically equivalent to that of the stimulus dependence. First,
to introduce some notation, let γ t be the vector of the spike counts for each
of the τ time steps prior to t:

γ t ≡ (yt−1, . . . , yt−τ )T
. (2.29)

Then the transition and firing rate equations are modified by additional
linear terms as

λ′
nm,t = g

(
k′

nm
Tst + h′

nm
T
γ t
)

(2.30)

and

λn,t = f
(
kn

Tst + hn
Tγ t
)
, (2.31)

where h′
nm and hn are weight vectors or linear filters that describe the

neuron’s preferred spike history patterns for transitioning and firing, re-
spectively. The effect of adding history dependence to the rate equations is
captured in Figure 2c.

As in the case of the stimulus filters, there are N2 history filters. Thus,
adding history dependence introduces τ N2 additional parameters to the
model, and if dt is much smaller than the maximal duration of history
effects, τ can be large, which can lead to a significant increase in the number
of parameters. One way to reduce the number of parameters associated
with history dependence is to assume that the history filters are linear
combinations of H fixed-basis filters {e1, . . . , eH} where H < τ . These basis
filters could, for example, be exponentials with appropriately chosen time
constants. We can then define h to be the H-element vector of coefficients
corresponding to the linear combination composing the history filter rather
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HMMs for Stimulus-Driven Neural Systems 1083

than the history filter itself. In this formulation, the spike history data vector
γ t is redefined as

γ t ≡ [e1 · · · eH]T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
yt−1

...
yt−τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (2.32)

while the transition and firing rate equations remain unchanged (equa-
tions 2.30 and 2.31 respectively).

Since either choice of spike history dependence simply adds linear terms
to the rate equations and since either formulation of γ t can be precomputed
directly from the spike train y with equations 2.29 and 2.32, we can safely
augment k and st with h and γ t , as in equations 2.25 and 2.26. Thus,
for the remainder of this article, without loss of generality, we will con-
sider only equations 2.27 and 2.28 for both history-dependent and history-
independent models.

2.2.3 Summary of Model. We have redefined the standard HMM transition
and emission matrices α and η to be time-inhomogeneous matrices αt and
ηt defined by rates λ′

t and λt , which in turn are calculated from linear-
nonlinear filterings of the stimulus st and the spike history γ t . Specifically,
the transition matrix in the final model is

αnm,t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g
(
k′

nm
Tst
)

dt

1 +∑l �=n g
(

k′
nl

Tst

)
dt

m �= n

1

1 +∑l �=n g
(

k′
nl

Tst

)
dt

m = n
, (2.33)

and the emission matrix is

ηni,t =
(

f
(
kn

Tst
)

dt
)i

e− f (kn
Tst ) dt

i !
i ∈ {0, 1, 2, . . .} . (2.34)

Therefore, with N hidden states, the parameters of the model θ are
the N(N − 1) k′ transition filters, the N k spiking filters, and the ini-
tial state distribution π . Since the number of parameters grows quadrat-
ically with N, it may be desirable to consider reduced-parameter models
in some contexts (see appendix A for discussion). The k filters are the
state-specific receptive fields (and possible history filters) of the model
neuron, while the k′ filters are the “receptive fields” describing how
the stimulus (and possibly spike history) influences the state transition
dynamics.
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1084 S. Escola, A. Fontanini, D. Katz, and L. Paninski

2.2.4 Parameter Learning with Baum-Welch EM. In order to learn the model
parameters from a spike train y given a stimulus S, we employ Baum-
Welch EM. The E-step remains completely unchanged by the modification
to point-process, stimulus, and history-driven emission data. All references
to α and η in section 2.1.2 can simply be replaced by αt and ηt as defined
in equations 2.33 and 2.34. For concreteness, we show the validity of the
forward recursion, equation 2.9, under the full model:

an,t ≡ p(y[0:t], qt = n | S)

= p(y[0:t−1], qt = n | S)p(yt | qt = n, y[0:t−1], S)

=
(

N∑
m=1

p(y[0:t−1], qt−1 = m, qt = n | S)

)
p(yt | qt = n, y[0:t−1], S)

=
(

N∑
m=1

p(y[0:t−1], qt−1 = m | S)p(qt = n | qt−1 = m, y[0:t−1], S)

)

× p(yt | qt = n, y[0:t−1], S)

=
(

N∑
m=1

p(y[0:t−1], qt−1 = m | S)p(qt = n | qt−1 = m, y[t−τ :t−1], S)

)

× p(yt | qt = n, y[t−τ :t−1], S)

=
(

N∑
m=1

am,t−1αmn,t

)
ηnyt ,t. (2.35)

Through a similar calculation, the backward recursion can also be shown
to be unchanged from equation 2.13.

The expression for the expected complete log likelihood (ECLL) that
needs to be maximized during the M-step can be found by substituting the
definitions of αt and ηt into equation 2.18:

〈
L(θ | y, q, S)

〉
p̂(q) =

N∑
n=1

p̂(q0 = n) log πn

+
T∑

t=1

N∑
n=1

N∑
m=1

p̂(qt−1 = n, qt = m) log αnm,t

+
T∑

t=0

N∑
n=1

p̂(qt = n) log ηnyt ,t, (2.36)
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HMMs for Stimulus-Driven Neural Systems 1085

where p̂(·) now also depends on the stimulus S: p̂(·) = p(· | y, S, θ i ). Since
the parameters of π , αt , and ηt enter into the above expression in a sepa-
rable manner, we can consider the three terms of equation 2.36 in turn and
maximize each independent of the others. Maximizing the π term proceeds
as before (see equation 2.19). For the αt term in the ECLL, we have

T∑
t=1

N∑
n=1

N∑
m=1

p̂(qt−1 = n, qt = m) log αnm,t

=
T∑

t=1

N∑
n=1

⎛
⎜⎜⎜⎝
∑
m �=n

p̂(qt−1 = n, qt = m) log
g
(
k′

nm
Tst
)

dt

1 +∑l �=n g
(
k′

nl
Tst
)

dt

+ p̂(qt−1 = n, qt = n) log
1

1 +∑l �=n g
(
k′

nl
Tst
)

dt

⎞
⎟⎟⎟⎠

∼
T∑

t=1

N∑
n=1

⎛
⎜⎜⎜⎜⎝

∑
m �=n

p̂(qt−1 = n, qt = m) log g
(
k′

nm
Tst
)

− p̂(qt−1 = n) log

⎛
⎝1 +

∑
l �=n

g
(
k′

nl
Tst
)

dt

⎞
⎠

⎞
⎟⎟⎟⎟⎠, (2.37)

where we have made use of the identity
∑

m p̂(qt−1 = n, qt = m) = p̂(qt−1 =
n). The ηt term reduces as

T∑
t=0

N∑
n=1

p̂(qt = n) log ηnyt ,t

=
T∑

t=0

N∑
n=1

p̂(qt = n) log

(
f
(
kn

Tst
)

dt
)yt e− f (kn

Tst) dt

yt!

∼
T∑

t=0

N∑
n=1

p̂(qt = n)
(
yt log f

(
kn

Tst
)− f

(
kn

Tst
)

dt
)
. (2.38)

We employ gradient ascent methods to maximize equations 2.37 and 2.38
(see appendix B for the necessary gradients and Hessians). Unfortunately,
in the general case, there is no guarantee that the ECLL has a unique maxi-
mum. However, if the nonlinearities g and f are chosen from a restricted set
of functions, it is possible to ensure that the ECLL is concave and smooth
with respect to the parameters of the model k′

nm and kn, and therefore
each M-step has a global maximizer that can be easily found with a gradi-
ent ascent technique. The appropriate choices of g and f are discussed in
section 2.2.6.
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1086 S. Escola, A. Fontanini, D. Katz, and L. Paninski

2.2.5 Modeling Multicell and Multitrial Data. One major motivation for
the application of the HMM framework to neural data is that the hidden
variable can be thought of as representing the overall state of the neural
network from which the data are recorded. Thus, if multiple spike trains
are simultaneously observed (e.g., with tetrodes or multielectrode arrays),
an HMM can be used to model the correlated activity between the single
units (under the assumption that each of the behaviors of the single units
depends on the hidden state of the entire network as in Abeles et al., 1995;
Seidemann et al., 1996; Gat, Tishby, & Abeles, 1997; Yu et al., 2006; Jones
et al., 2007; Kulkarni & Paninski, 2007). Additionally, if the same stimulus is
repeated to the same experimental preparation, the data collected on each
trial can be combined to improve parameter estimation. In this section, we
provide the extension of our stimulus- and history-dependent framework
to the regime of data sets with C simultaneously recorded spike trains and
R independent trials.

In the single-cell case, we considered the state-dependent emission prob-
ability p(yt | qt, S), with yt being the number of spikes in time-step t. We
now consider the joint probability of the spiking behavior of all C cells at
time t conditioned on state qt , or p(y1

t , . . . , yC
t | qt, S). We factorize

p
(
y1

t , . . . , yC
t | qt, S

)= C∏
c=1

p(yc
t | qt, S)

=
C∏

c=1

ηc
qt yc

t
, (2.39)

where each cell-specific emission matrix ηc is defined according to the Pois-
son distribution as before (see equation 2.20):

ηc
ni = (λc

n dt)i e−λc
ndt

i !
i ∈ {0, 1, 2, . . .} , (2.40)

with λc
n as the state- and cell-specific firing rate for cell c in state n, given

the observed stimulus and past spike history. The time-varying rates also
retain their definitions from the single-cell setting (see equation 2.28):

λc
n,t = f

(
kc

n
Tst
)
. (2.41)

Note that the number of transition filters for the multicell model is un-
changed (N2 − N), but that the number of spiking filters is increased from
N to NC (i.e., there is one spiking filter per state per cell).

Learning the parameters of this multicell model via Baum-Welch EM is
essentially unchanged. For the E-step, all references to ηnyt in the expressions
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HMMs for Stimulus-Driven Neural Systems 1087

for the forward and backward recursions as presented in section 2.1.2 are
simply replaced with the product

∏
c ηc

nyc
t

to give the corresponding expres-
sions for the multicell setting. For the M-step, we note that the complete log
likelihood for the multicell model is modified from equation 2.5 only in the
final term:

L(θ | Y, q) = log πq0 +
T∑

t=1

log αqt−1qt +
C∑

c=1

T∑
t=0

log ηc
qt yc

t
, (2.42)

where Y ≡ (y1 · · · yC ). Thus, the emission component of the ECLL (see equa-
tion 2.38) becomes

C∑
c=1

T∑
t=0

N∑
n=1

p̂(qt = n) log ηc
nyc

t ,t

∼
C∑

c=1

T∑
t=0

N∑
n=1

p̂(qt = n)
(
yc

t log f
(
kc

n
Tst
)− f

(
kc

n
Tst
)

dt
)
. (2.43)

Since the cell-specific filters kc
n enter into equation 2.43 in a separable man-

ner, the parameters for each cell can again be learned independently by
climbing the gradient of the cell-specific component of the ECLL. Thus,
the gradient and Hessian given in appendix B can be used in the multicell
setting without modification.

To allow for multiple trials, we note that if each of the R trials is indepen-
dent of the rest, then the total log likelihood for all of the trials is simply the
sum of the log likelihoods for each of the individual trials. Thus, to get the
total log likelihood, the forward-backward algorithm is run on each trial r
separately, and the resultant trial-specific log likelihoods are summed. The
M-step is similarly modified, as the total ECLL is again just the sum of the
trial-specific ECLLs:

〈
L
(
θ | Y1, q1, . . . , YR, qR)〉

p̂(q1,...,qR)

=
R∑

r=1

N∑
n=1

p̂(qr
0 = n) log πn+

N∑
n=1

R∑
r=1

T∑
t=1

N∑
m=1

p̂(qr
t−1 = n, qr

t = m) log αnm,t

+
C∑

c=1

R∑
r=1

T∑
t=0

N∑
n=1

p̂(qr
t = n) log ηc

nyc,r
t ,t, (2.44)

where p̂(qr
t ) and p̂(qr

t−1, qr
t ) are the trial-specific single- and consecutive-

pairwise marginals of the posterior distribution over the state sequence
given by the forward-backward algorithm applied to each trial during the
E-step, and yc,r

t is the number of spikes by cell c in the tth time step of the r th
trial. The M-step update for the start-state distribution (see equation 2.19)
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is modified as

πn = 1
R

R∑
r=1

p̂(qr
0 = n). (2.45)

To update the transition and spiking filters, gradient ascent is performed
as in the single trial setting, except that the trial-specific gradients and
Hessians for each filter are simply summed to give the complete gradients
and Hessians. Note that the order of the sums in equation 2.44 represents
the fact that the parameters that determine the transitioning behavior away
from each state n are independent of each other, as are the parameters
that determine the spiking behavior for each cell c, and so these sets of
parameters can be updated independently during each M-step.

2.2.6 Guaranteeing the Concavity of the M-step. As Paninski (2004) noted
for the standard GLM model, the ECLL in equation 2.38 depends on the
model parameters through the spiking nonlinearity f via a sum of terms in-
volving log f (u) and − f (u). Since the sum of concave functions is concave,
the concavity of the ECLL will be ensured if we constrain log f (u) to be a
concave function and f (u) to be a convex function of its argument u. Exam-
ple nonlinearities that satisfy these log concavity and convexity constraints
include the exponential, rectified linear, and rectified power law functions.

The concavity constraints for the transition rate nonlinearity are signif-
icantly more stringent. From equation 2.37, we see that g enters into the
ECLL in two logarithmic forms: log g(u) and − log (1 +∑i g(ui ) dt), where
each ui is a function of the parameters corresponding to a single transition
(e.g., k′

nm). The first term gives rise to the familiar constraint that g must
be log concave. To analyze the second term, we consider the limiting case
where g(u j )dt � 1 and g(u j ) � g(ui ),∀i �= j (which will be true for some
setting of the parameters that compose the ui ). Then the second logarithmic
term reduces to − log g(u j ), which introduces the necessary condition that
g must be log convex. Explicit derivation of the second derivative matrix
of − log (1 +∑i g(ui )dt) confirms that the log convexity of the nonlinearity
is sufficient to guarantee that this matrix is negative-definite for all values
of the ui (i.e., not just in the limiting case). The only functions that are both
log concave and log convex are those that grow exponentially, and thus,
if the transition nonlinearity is the exponential function (if g(u) = eu), the
concavity of the M-step will be guaranteed.1

1In general, any function of the form ecu+d satisfies log concavity and log convexity
in u. But for our model where u = kTst + b, the parameters c and d can be eliminated
by scaling the filter k and changing the bias term b. Thus, we can restrict ourselves to
consider only the nonlinearity eu without loss of generality.
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HMMs for Stimulus-Driven Neural Systems 1089

2.2.7 Using a Continuous-Time Model. It is possible to adapt our model
to a continuous-time rather than a discrete-time framework (see appendix
C for details). This has several potential advantages. First, as the deriva-
tion of the continuous-time M-step reveals, the stringent requirement that
the transition rate nonlinearity g must be the exponential can be relaxed
while maintaining the concavity of the ECLL. This significantly increases
the flexibility of the model. More important, however, the continuous-time
implementation may require less computation and memory storage. During
the E-step in the discrete-time case, the forward and backward probabilities
are calculated for every time step t. When one considers the fact that the vast
majority of time steps for a reasonable choice of dt (≤10 ms) are associated
with the trivial “no-spike” emission even for neurons with relatively high
firing rates, it becomes obvious why a continuous-time framework might
potentially be advantageous since it is possible to numerically integrate the
forward and backward probabilities from spike time to spike time. Using
an ODE solver to perform this integration is effectively the same as using
adaptive time stepping where dt is modified to reflect the rate at which the
probabilities are changing. This can result in significantly fewer computa-
tions per iteration than in the discrete-time case. Additionally, it is necessary
to store the marginal probabilities of the posterior distribution (for eventual
use during the M-step) only at the time points where the ordinary differen-
tial equation (ODE) solver chooses to evaluate them, which is likely to be
many fewer total points. Although the results we present below were all
obtained using a discrete-time algorithm, for the reasons just mentioned,
implementation of a continuous-time model may be more appropriate for
certain large data sets, specifically those with highly varying firing rates
where a single time step would be either too computationally expensive or
would result in a loss of the finely grained structure in the data.

2.3 Hybrid Peristimulus Time Histogram and Hidden Markov Mod-
els. As a demonstration of how the framework introduced in this article can
be extended to more appropriately suit certain data sets, in this section we
introduce modifications that allow the modeling of state-dependent firing
rates when the rates are not being driven by an explicit time-varying stim-
ulus, but simultaneously are not time homogeneous. Many experimental
data sets consist of multiple trials that are triggered by an event and exhibit
interesting event-triggered dynamics (see, e.g., the data discussed in sec-
tion 4). Assuming these dynamics evolve in a state-dependent manner, the
ability to model such inhomogeneous systems with HMMs is potentially
useful. It is important to note, however, that the models that we introduce in
sections 2.3.1 and 2.3.2, while mathematically very similar to those already
presented, differ philosophically in that they are not specifically motivated
by a simple neural mechanism. In the previous models, firing rate changes
are driven by the time-varying stimulus. In these models, though they al-
low the capture of firing rate changes, the genesis of these inhomogeneities
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1090 S. Escola, A. Fontanini, D. Katz, and L. Paninski

is not explicitly defined (although these models are designed to provide a
snapshot of the dynamics of an underlying neural network from which a
data set is recorded).

2.3.1 The Trial-Triggered Model. As our first example, we consider a model
in which the transition and firing rates depend on the time t since the begin-
ning of the trial (in addition to the hidden state qt and, possibly, spike history
effects). For simplicity, we assume that no time-varying stimulus is present,
although incorporating additional stimulus terms is straightforward. Ex-
plicitly, we can model the transition and firing rates as λ′

nm,t = g([k′
nm]t) and

λc
n,t = f ([kc

n]t + hc
n

Tγ c
t ), respectively, where the spike history effects hc

n
Tγ c

t
are as defined in section 2.2.2, [k]t is the tth element of k, and the filters k′

nm
and kc

n are now time-varying functions of length T (see Kass & Ventura,
2001; Frank, Eden, Solo, Wilson, & Brown, 2002; Kass, Ventura, & Cai, 2003;
Czanner et al., 2008; Paninski et al., 2009, for discussion of related models).
In principle, the filter elements can take arbitrary values at each time t, but
clearly estimating such arbitrary functions given limited data would lead to
overfitting. Thus, we may either represent the filters in a lower-dimensional
basis set (as we discussed with hn in section 2.2.2), such as a set of splines
(Wahba, 1990), or we can take a penalized maximum likelihood approach
to obtain smoothly varying filters (where the difference between adjacent
filter elements [k]t and [k]t+1 must be small), or potentially combine these
two approaches. (For a full treatment of a penalized maximum likelihood
approach to this “trial-triggered” model, see appendix D.)

A convenient feature of using the smoothness penalty formulation is
that the model then completely encapsulates the homogeneous HMM with
static firing rates in each state. If the smoothness penalties are set such
that the difference between adjacent filter elements is constrained to be
essentially zero, then the spiking and transition filters will be flat, or, equiv-
alently, the model will become time homogeneous. In the opposite limit, as
discussed above, if the penalties are set such that the differences between
adjacent elements can be very large, then we revert to the standard maxi-
mum likelihood setting, where overfitting is ensured. Thus, by using model
selection approaches for choosing the setting of the penalty parameter (e.g.,
with cross-validation or empirical Bayes as in Rahnama Rad and Paninski,
2010), it is possible to determine the optimal level of smoothness required
of the spiking and transitioning filters.

It is clear that this proposed trial-triggered model is a hybrid between
a standard peristimulus time histogram-based (PSTH) model and a time-
homogeneous HMM. Although we have been able to reformulate this model
to fit exactly into our framework, it is illustrative to consider the model,
rather than as an N-state time-inhomogeneous model with an unrestricted
transition matrix (as in Figure 1), as an NT-state time-homogeneous model
with a restricted state-space connectivity. In this interpretation, state nt

is associated with the N − 1 transition rates λ′
ntmt+1

≡ g(k ′
ntmt+1

) for m �= n
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HMMs for Stimulus-Driven Neural Systems 1091

Figure 3: The time-expanded Markov chains representing the trial-triggered
and transition-trial models. (a) The trial-triggered model. At time step t, the
neuronal ensemble is in some state nt , where its firing rates are determined by the
parameters {k1

nt
, . . . , kC

nt
}. At the following time step, the system is forced to move

one step to the right (to the column corresponding to time t + 1) and change
rows depending on the transition rates given by the N − 1 parameters k ′

ntmt+1
for

m �= n. The firing and transition rates associated with each row of states change
gradually with increasing t due to the application of smoothness priors (see
appendix D). Note that there are no self-transitions in this model; whether the
state changes rows or not, at every time step, it moves one column to the right.
(b) The transition-triggered model. The firing rates are associated with each
state as in a, but the model must now either advance along a row or transition
back to the first column of states. Therefore, after the first such transition, the
time-step t and the depth in the Markov chain τ become decoupled. This allows
the intra state dynamics to evolve from the time that the neuron enters a state
(or, more accurately, a row of states) rather than from the time of the onset of
the trial.

leading to the states available at time t + 1.2 In other words, the transition
matrix is sparse with nonzero entries only between states corresponding
to adjacent time steps. Note that this model is exactly the same as before,
merely represented in a different way. Conceptually, a small state space
with dynamic firing and transition rates has been replaced by a large state
space with static rates. A schema of the Markov chain underlying the trial-
triggered model is given in Figure 3a. Each row of states in the figure

2Note that no parameter is needed for the transition from state nt to nt+1, as this is the
default behavior of the system in the absence of any other transition (see equation 2.21).
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1092 S. Escola, A. Fontanini, D. Katz, and L. Paninski

corresponds to what was a single state in the previous representation of the
model, and each column corresponds to a time step t. Due to the restricted
nature of the state-space connectivity (i.e., the few nonzero entries in the
transition matrix), the system will always be in a state of the tth column at
time t.

2.3.2 The Transition-Triggered Model. Another possible extension of this
framework is illustrated in Figure 3b. The idea is to couple the dynamics
of the system to the times at which the state transitions rather than the
start of the trial. This model structure is closely connected to the “semi-
Markov” models and other related models described previously (Sansom
& Thomson, 2001; Guédon, 2003; Fox, Sudderth, Jordan, & Willsky, 2008;
Chen et al., 2009; Tokdar et al., 2009), as we will discuss further below. In this
model, transitions that result in a change of row reset the system to the first
column of the state space, as opposed to the trial-triggered model, where all
transitions move the system to the next column. In this transition-triggered
model, we label the current state as nτ , which is the τ th state in the nth row of
states. Note that the index τ is only equal to the time-step t prior to the first
transition back to the first column of states. Subsequently, τ , which can be
thought of as the depth of the current state in the state-space cascade, will re-
flect the time since the last transition, not the time since the onset of the trial,
exactly as desired. The model parameters kn and k′

nm can now be thought
of as state-dependent peritransition time histograms (PTTHs) for spiking
and transitioning (rather than PSTHs) due to the decoupling of τ from t.
Note that each state nτ is associated with N transition rates λ′

nτ m0
≡ g(k ′

nτ m0
)

where m may equal n (unlike in the trial-triggered case, where each state
was associated with N − 1 transition rates) because we permit transitions
back to the start of the current row. Additionally, recall that when the trial-
triggered model was reformulated as having NT-states rather than N-states,
the model became time homogeneous. For the transition-triggered model,
however, since τ and t are decoupled, the firing rates for each state nτ are
no longer time homogeneous. A consequence is that the time complexity of
the associated Baum-Welch learning algorithm becomes O(T2) rather than
O(T). For a full treatment of the transition-triggered model, see appendix E.
Results from the analysis of real data using this model appear elsewhere
(Escola, 2009).

3 Results with Simulated Data

In this section, we apply our algorithm to simulated data sets to test its
ability to appropriately learn the parameters of the model.

3.1 Data Simulation. In our trials with simulated data, the stimuli used
to drive the spiking of the model neurons are time correlated gaussian white
noise stimuli with spatially independent and identically distributed (i.i.d.)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/23/5/1071/858276/neco_a_00118.pdf by C
olum

bia U
niversity Libraries user on 16 M

ay 2024



HMMs for Stimulus-Driven Neural Systems 1093

pixels. More specifically, the intensity of the stimulus at each pixel was
given by an independent autoregressive process of order 1 with a mean of
0, a variance of 1, an autocorrelation of 200 ms, and a time step of 2 ms.

In order to generate simulated spike trains (via equation 2.28), we used
the firing rate nonlinearity,

f (u) =
{

eu u ≤ 0

1 + u + 1
2

u2 u > 0
. (3.1)

This function f is continuous and has continuous first and second deriva-
tives, thus facilitating learning in gradient algorithms. Furthermore, the
properties of convexity and log concavity are also maintained, guaranteeing
that the ECLL has a unique maximum (recall section 2.2.6). The nonlinear-
ity g governing the transitioning behavior is selected to be the exponential
function (also per section 2.2.6).

3.2 A Tonic and Burst Two-State Model. We tested our learning al-
gorithm on spike trains generated from a model representing tonic and
burst thalamic relay cells. Experimental studies such as those reviewed in
Sherman (2001) have shown that relay cells exhibit two distinct modes of
firing. In the tonic mode (hereafter referred to as the tonic state), interspike
intervals (ISIs) are approximately distributed according to an exponential
distribution, suggesting that spikes are more or less independent and that a
Poisson firing model is reasonable. In the burst state, neighboring spikes are
highly correlated (they tend to occur in bursts), as indicated by a vastly dif-
ferent ISI distribution (Ramcharan, Gnadt, & Sherman, 2000), and thus any
reasonable model must capture these correlations. To do so, we employed
different spike history filters for the two states.

If the tonic state history filter ht were the zero vector (where the sub-
scripts t and b refer to the tonic and burst states, respectively), then tonic
state spikes during a constant stimulus would be independent, leading to
an exactly exponential ISI distribution. Instead we chose the history filter
shown in Figure 4a, which has a large, negative value for the most recent
time step, followed by small, near-zero values for earlier time steps. This
negative value models the intrinsic refractoriness of neurons by strongly
reducing the probability of a subsequent spike one time step (2 ms) after
a preceding spike (recall how the spike history affects the firing rate ac-
cording to equation 2.31). The resulting ISI distribution (in light gray in
Figure 5) has low probability density for short intervals due to the imposed
refractoriness, but it is otherwise essentially exponential.

The burst-state history filter hb (see Figure 4b) has a similar negative
value for the most recent time step and thus also models refractoriness, but
it has strong, positive values for the previous two time steps. This has the
effect of raising the probability of a spike following an earlier spike, and thus
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1094 S. Escola, A. Fontanini, D. Katz, and L. Paninski

Figure 4: The true and learned stimulus and history filters of the tonic and
burst thalamic relay cell described in section 3.2. For this model, the preferred
stimulus for spiking is the same for both states. The history filters are actually
parameterized by the coefficients of three exponential basis functions with 2,
4, and 8 ms time constants. For ease of visual interpretation, the filters, rather
than the underlying parameters, are shown. All true parameter values (in dark
gray) fall within the ±1 σ error bars (in light gray). Means and errors were
calculated over 100 learning trials, each with a unique stimulus/spike train pair
generated according to section 3.1. Parameters were initialized randomly from
zero mean, unit variance gaussians. By visual inspection, all 100 trials converged
to seemingly correct solutions (i.e., local minima were not encountered). As
discussed in the text, the larger error bars shown for the history filter weights at
2 ms in the past reflect the fact that the data contain little information about the
filter weights at this time resolution. (a) Spiking filter ht . (b) Spiking filter hb . (c)
Transition filter h′

tb . (d) Transition filter h′
bt . (e) Spiking filter kt . (f) Spiking filter

kb . (g) Transition filter k′
tb . (h) Transition filter k′

bt .

encourages bursting. Furthermore, the filter returns to negative values for
more distant time steps, which tends to cause gaps between bursts, another
known neurophysiological feature. The resulting ISI distribution (in dark
gray in Figure 5) has the signature bimodal shape of bursting (Ramcharan
et al., 2000).

A reasonable choice for the history filter for the transition from the tonic
state to the burst state (h′

tb) consists of negative values for the several time
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HMMs for Stimulus-Driven Neural Systems 1095

Figure 5: Interspike interval (ISI) distributions calculated for the tonic and burst
states of the model neuron described in section 3.2 over 2000 s of simulated
data. It is clear that the tonic state ISI is essentially exponential, excluding the
refractory effects at small interval lengths. The burst state ISI has a sharp peak at
very short intervals, followed by a reduction in interval probability at medium
interval lengths. This pattern represents bursts separated by longer periods of
silence, the physiological criteria for bursting. Total state dwell times and mean
state firing rates are given in the legend.

steps preceding the transition. This is because bursts tend to follow periods
of relative quiescence (Wang et al., 2007), and, with this choice of h′

tb (see
Figure 4c),3 the model neuron will prefer to transition to the burst state
when there has not been a recent spike. We chose the history filter for the
reverse transition (h′

bt) to be the zero vector (see Figure 4d), and thus spike
history does not affect the return to the tonic state from the burst state. To
reduce the model dimensionality, the history filters were defined by the
coefficients of three exponential basis functions with time constants 2, 4,
and 8 ms (recall the discussion in section 2.2.2).

The stimulus filters for spiking for both states (kt and kb ; see Figures 4e
and 4f, respectively) were chosen to be identical, following experimental
evidence that the spatial component of the preferred stimulus does not
change regardless of whether a relay cell is firing in the tonic or burst

3Comparing Figures 4c to 4a and 4b, one might conclude that h′
tb is relatively insignif-

icant due to the fact that the magnitudes of its weights are much less than those of ht and
hb . Recall, however, that the nonlinearity for transitioning g grows exponentially, while
the nonlinearity for spiking f grow quadratically, so small-magnitude filter weights can
still have pronounced effects on the transition rate.
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1096 S. Escola, A. Fontanini, D. Katz, and L. Paninski

regime (Bezdudnaya et al., 2006).4 The spiking bias terms were set such
that the background firing rates were 45 Hz in both states: f (bt) = f (bb)
= 45 Hz.

To choose the stimulus filter for the transition from the tonic state to the
burst state (k′

tb ; see Figure 4g), we used a similar line of reasoning as in
the choice of the corresponding history filter. Since bursts tend to follow
periods of quiescence, we selected as this transition filter the negative of the
spiking filter. Thus, the antipreferred stimulus would drive the cell into the
burst state, where the preferred stimulus could then trigger bursting. This is
reasonable from a neurophysiological point of view by noting that voltage
recordings from patched cells have shown hyperpolarized membrane po-
tentials immediately prior to bursts (Sherman, 2001; Wang et al., 2007) and
that an antipreferred stimulus would be expected to hyperpolarize a neuron
through push-pull inhibition. The stimulus filter for the reverse transition
k′

bt , as with h′
bt , was chosen to be the zero vector (see Figure 4h). Thus, the

return to the tonic state in this model is governed solely by the background
transition rate. The bias terms b ′

tb and b ′
bt were set such that the background

transition rates were 3 Hz and 7 Hz, respectively, for the tonic→burst and
the burst→tonic transitions. When the neuron is presented with a stimulus,
however, due to the variance of k′

tb
Tst and the effects of the nonlinearity g,

the average resultant rates are roughly equal for both transitions (approx-
imately 7 Hz), and thus the model neuron spends about the same amount
of time in each state.

When generating spike trains using these parameters, we changed the
model slightly so as to restrict the number of spikes allowed per time step to
be either zero or one. Specifically, we changed the emission matrix defined
in equation 2.34 to be

ηnyt ,t =
{

e−λn,tdt yt = no spike

1 − e−λn,tdt yt = spike
. (3.2)

This corresponds to thresholding the Poisson spike counts to form a
Bernoulli (binary) process: when the Poisson spike count is greater than
zero, we record a one for the Bernoulli process. Note that this Bernoulli for-
mulation converges to the original Poisson formulation in the limit of small
dt. Conveniently, the nonlinearity f has the same concavity constraints un-
der this Bernoulli model as in the original Poisson model (see appendix F
for proof).

4These experiments also show that the temporal component of the preferred stimulus
differs between the two states, which we could model by including multiple time slices in
the stimulus filters. For simplicity and reduction of parameters, we ignore the temporal
differences in our model.
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HMMs for Stimulus-Driven Neural Systems 1097

Using this spiking model and the parameter settings described above,
we generated 2000 s spike trains as test data. Before iterating our learning
algorithm, the filters and biases were initialized to random values drawn
from zero mean, unit variance gaussians, while the initial state distribution
π was initialized from an N-dimensional uniform distribution and then
normalized to sum to 1. Learning proceeded according to the Baum-Welch
EM algorithm described in sections 2.1.2, 2.1.3, and 2.2.4, with Newton-
Raphson optimization used to perform the update of the parameters dur-
ing the M-step (see section F.1 for the gradient and Hessian of the Bernoulli
model). Considerable experimentation with the learning procedure sug-
gested that except perhaps for the first one or two iterations of EM when the
parameters are far from their correct values, a single Newton-Raphson step
was sufficient to realize the parameter maximum for each M-step (i.e., the
ECLL was very well approximated by a quadratic function). For these pa-
rameters and this amount of data, learning generally converged in about
200 to 300 iterations, which requires about 30 minutes of CPU time on
an Apple 2.5 GHz dual-core Power Mac G5 with 3 GB of RAM running
MATLAB.

Learning was repeated for 100 trials, each with a unique stimulus/spike
train pair and a unique random initialization. By visual inspection, all trials
appeared to avoid local minima and converged to reasonable solutions. The
results for the history and stimulus filters (without bias terms) are shown in
Figure 4. The ±1 σ error ranges for the bias terms (expressed in rate space)
are 44.5 to 45.5 Hz, 44.6 to 45.4 Hz, 2.5 to 3.3 Hz, and 6.5 to 7.4 Hz, for bt , bb ,
b ′

tb , and b ′
bt , respectively. All true filter and bias parameters fall within the

±1 σ error ranges, suggesting that parameter learning was successful. The
larger-than-average error bars for the weights of the transition history filters
at 2 ms in the past (see Figures 4c and 4d) reflect the fact that spike trains
contain little information about the dependence of the state transitioning on
the spike history at very short timescales. The estimation of the consecutive-
pairwise marginal probabilities of the posterior distribution of the state
sequence (see equation 2.15) calculated by the forward-backward algorithm
(see section 2.1.2) is not able to temporally localize the transitions to within
a 2 ms precision even if the true parameters are used for the estimation.
Therefore, one would need to average over a great deal more data to infer the
dependence at this timescale than at slightly longer timescales. If more data
were used to estimate the parameters, these error bars would be expected
to decrease accordingly.

Although the parameter values appear to be learned appropriately, they
are not learned perfectly. To understand the implication of these deviations,
data generated using the true parameters can be compared to those gen-
erated using a sample learned parameter set. Rather than compare spike
trains directly, it is sufficient to compare instantaneous firing rates, since
the rate is a complete descriptor of Bernoulli (or Poisson) firing statistics.
Figure 6a shows the instantaneous firing rates of two sample simulations
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1098 S. Escola, A. Fontanini, D. Katz, and L. Paninski

Figure 6: Instantaneous firing rate samples and distributions calculated using
the true parameter values and a set of learned parameters for the tonic and burst
model neuron discussed in section 3.2 during an illustrative 1 s time window of
stimulus data. (a) The dark and light gray traces are the instantaneous firing rates
of two sample simulations of the model, the former using the true parameters
and the latter using the learned parameters. The two sample simulations differ
significantly due to the fact that spike history affects the instantaneous firing
rate. (b) The solid and dashed dark gray lines are, respectively, the mean and
±1 σ deviations of the instantaneous firing rate estimated from 1000 repeated
simulations using the true parameters. The analogous mean and deviations
estimated using the learned parameters are shown in light gray. The similarity
of the two distributions confirms that learning was successful. The fact that the
means and variances are conserved despite highly divergent individual sample
firing rates suggests that the average rate over some window of time is a better
descriptor of the behavior of the neuron than the instantaneous rate.

of the model using the same stimulus but two different parameter sets.5

The most striking feature is how different the two traces seem from each
other. This is because spikes in the two traces are very rarely coincident, and
the spike history dependence dramatically alters the firing rates during the
several milliseconds following a spike. This is apparent from the many dips
in the firing rates to near-zero values (immediately after spikes), followed
by relatively quick rebounds to the purely stimulus-evoked firing rate (the
rate given by a spike history independent model). Also noticeable are the

5To remove any potential bias, the learned parameter set was not trained on the
stimulus used to create Figure 6.
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HMMs for Stimulus-Driven Neural Systems 1099

Figure 7: The posterior probability of the hidden state calculated using true
and learned parameter values for the tonic and burst model during the same 1 s
time window of stimulus data as in Figure 6. The dotted trace indicates when
the model neuron was in the tonic state during the simulation corresponding to
the sample shown in dark gray in Figure 6a (recall that for simulated data,
the true state sequence is known). The dark gray trace is the posterior prob-
ability of the tonic state using the true parameters (as calculated with the
forward-backward algorithm described in section 2.1.2), while the light gray
trace corresponds to the posterior probability using the learned parameters.
The similarity between the two posterior probability traces confirms that the
learned parameters are as effective as the true parameters in recovering the
hidden state sequence.

huge jumps in the firing rate corresponding to times when the neuron has
been simulated to be in the burst state and is actively bursting.

The distributions of the instantaneous firing rates calculated over 1000
model simulations for both the true parameters and the set of learned
parameters are shown in Figure 6b. Despite the fact that individual tri-
als such as those shown in Figure 6a can differ significantly, the means
and ±1 σ deviations are almost identical between the two distributions,
confirming that the two parameter sets (true and learned) produce identi-
cal behavior in the model neuron. In other words, the interparameter set
firing rate variability is no more than the intraparameter set firing rate
variability.

To additionally evaluate the estimation performance, in Figure 7, we
compare the posterior probability of the hidden state variable at each time
step with the true state sequence. The trace corresponding to the posterior
probability calculated using the learned parameters is essentially the same
as that calculated using the true parameters, suggesting that both sets of pa-
rameters are equally able to extract all the information about the sequence
of states that exists in the spike train. The difference between the true state
sequence and the posterior probability calculated using the true parameters
represents the intrinsic uncertainty in the system, which we cannot hope to
remove. However, over 2000 s of stimulus/spike train data, the percentage
of time steps when the true state was predicted with a posterior proba-
bility greater than 0.5 was 92%. These results support the fidelity of the
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1100 S. Escola, A. Fontanini, D. Katz, and L. Paninski

learning procedure and suggest that it may be possible to use this method
to recapitulate an unknown state sequence.

3.3 An Attentive/Ignoring Two-State Model. We also tested our learn-
ing algorithm on spike trains generated from a simulated neuron with
two hidden states corresponding to stimulus-driven spiking and stimulus-
ignoring spiking, respectively. This model could be interpreted to represent
a neuron in primary sensory cortex. The attentive state would correspond
to times when the synaptic current into the neuron is predominantly de-
rived from thalamic afferents, and thus when the neuron’s spiking behavior
would be highly correlated with the sensory stimulus. The ignoring state
would be associated with times when recurrent activity in the local corti-
cal column or feedback activity from higher cortical areas overwhelms the
inputs and drives the neuron’s spiking in a stimulus-independent manner.

The ignoring state can be represented by setting the stimulus filter for
spiking in that state to be zero for all elements except for the bias term:
ki = (0T, bi

)T, where the subscript i indicates the ignoring state (and a the
attentive state). The stimulus filters of the model—ka , ki , k′

ai , and k′
ia —are

shown in Figure 8 (history effects are ignored for this simple model). The
forms of these filters are arbitrary choices (with the exception of ki ), and
the magnitudes of the filter values were chosen to be of the same order of
magnitude as the zero mean, unit variance stimulus. The bias terms were
set such that the background firing and transition rates in both states were
45 Hz and 0.1 Hz, respectively, which resulted in mean firing and transition
rates in the presence of a stimulus of about 50 Hz and 9 Hz, respectively, due
to the effects of the nonlinearities. Note that the original Poisson spiking
model was used to generate the data for this example.

Learning proceeded as in the previous example and was repeated for
100 trials, each with a unique 2000 s stimulus/spike train pair and a unique
random parameter initialization. By visual inspection, all trials appeared to
avoid local minima and converged to reasonable solutions. The results for
the filter parameters (without biases) are summarized in Figure 8. The ±1 σ

error ranges for the bias terms (expressed in rate space) are 44.6 Hz to 45.4
Hz, 44.8 Hz to 45.2 Hz, 0.04 Hz to 0.13 Hz, and 0.07 Hz to 0.12 Hz, for ba , bi ,
b ′

ai , and b ′
ia , respectively. All true filter and bias parameters fall within the

±1 σ error ranges; thus, parameter learning was successful. For comparison
purposes, the linear filter of a standard GLM (i.e., one-state) model was also
learned. The resulting filter (shown with the dotted line in Figure 8a) differs
significantly from the underlying stimulus filter for spiking ka and seems to
represent some combination of ka and ki (i.e., the two spiking filters), as well
as k′

ia , the transition filter that drives the neuron into the attentive state so
that it can subsequently be driven to fire by the stimulus acting through ka .

As is shown in Figure 6b for the previous example, the distributions
of the instantaneous firing rates calculated over many simulations of the
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HMMs for Stimulus-Driven Neural Systems 1101

Figure 8: The true and learned stimulus filters constituting the parameters of the
two-state attentive/ignoring neuron described in section 3.3. The conventions
are the same as in Figure 4. The filter resulting from learning a standard GLM
model is shown with the dotted line. (a) Spiking filter ka . (b) Spiking filter ki .
(c) Transition filter k′

ai . (d) Transition filter k′
ia .

attentive/ignoring model for both the true parameters and a set of learned
parameters can be compared; again, the means and ±1 σ deviations are
almost identical between the two distributions, confirming that the two
parameter sets (true and learned) produce identical behavior in the model
neuron (data not shown). Analysis of the inferred posterior probability of
the hidden state variable at each time step compared with the true state
sequence further confirms the success of learning. The posterior probabili-
ties resulting from the true parameters and a set of learned parameters are
nearly identical, suggesting that the learning procedure was as successful
as possible (data not shown). Over 2000 s of data, the correlation coefficient
between the true state sequence and the inferred posterior probability was
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1102 S. Escola, A. Fontanini, D. Katz, and L. Paninski

0.91, while the percentage of time steps when the true state was predicted
with a posterior probability greater than 0.5 was 95%.

4 Multistate Data in Rat Gustatory Cortex

Jones et al. (2007) have presentd an analysis of multielectrode data collected
from gustatory cortex during the delivery of tastants—solutions of sucrose
(sweet), sodium chloride (salty), citric acid (sour), and quinine (bitter)—
to the tongues of awake, restrained rats. Each tastant was applied 7 to 10
times during each recording session, with water washouts of the mouth
between trials. Across all recording sessions and all four tastants, the data
consist of 424 trials, where each trial composes the 2.5 s of multielectrode
spiking data immediately following the application of a tastant. Note that
different sets of cells (varying in number from 6 to 10) were isolated during
each recording session, and so only the trials corresponding to the same
session and tastant pair can be considered to be samples from the same
neural process.6 In the initial analysis of the data, after directly inspecting
the spike raster plots over multiple trials, it was realized that when multiple
cells tended to change their firing rates during the course of a trial, they
tended to do so simultaneously on a given trial but that this transition time
often differed between trials. Thus, the choice was made to perform a simple
HMM analysis to model these data. Specifically, a four-state model with
constant state-dependent firing rates for each cell and constant transition
rates between all pairs of states was fit to the data. Couching this previous
model in our current notation, the stimulus filters kc

n and k′
nm reduce to

the background firing and transition rates bc
n and b ′

nm, respectively, with
all history filters equal to 0. Note that these data conform to the multicell
multitrial paradigm introduced in section 2.2.5.

4.1 Results from Spike History Dependent Models. While this data
set does not have a known external time-varying stimulus and thus de-
termining preferred stimuli for firing and transitioning is not possible, we
provide a brief analysis extending the model presented in Jones et al. (2007)
to include one aspect of the framework developed in section 2.2: the model-
ing of spike history effects. Note that in Chen et al. (2009), the authors also
include spike history dependence in their model of UP and DOWN states
during slow-wave sleep.

Unlike the case of simulated data, we do not know the true state-
dependent firing rates, transition rates, or history filters, and so rather than

6In Jones et al. (2007) and in the analysis presented here, the trials from each session
and tastant pair are assumed to be i.i.d. samples, which could be a false assumption due
to, for example, changing motivational and arousal factors. However, a previous analysis
investigated this issue and found that to a first approximation, the neural spiking behavior
remains stationary over the course of a recording session (Fontanini & Katz, 2006).
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HMMs for Stimulus-Driven Neural Systems 1103

comparing the learned model parameters to the true model parameters as
is done in the previous section, we instead evaluate the cross-validated log
likelihood of the data, an unbiased measure of the goodness of fit, over
several model classes. The model class with the highest cross-validated log
likelihood provides the best fit to the data. We compute the cross-validated
log likelihood using leave-one-out cross-validation as follows. For every
trial, we fit an HMM to the remaining trials of the same session and tas-
tant pair and then evaluate the log likelihood of the left-out trial on the
trained model. The sum of these log likelihoods for all 424 trials equals
the total cross-validated log likelihood for the particular model class in
question.

Jones et al. (2007) showed that using HMMs provides a more favorable
fit to the data than using peristimulus time histograms (PSTHs), the tradi-
tional way of analyzing data such as these. It was argued that a possible
explanation for this improved performance is that if the cortex does follow
a series of computational steps after the application of the stimulus but does
not complete each step in the same amount of time from trial to trial, then
at any given poststimulus time, the state of the animal, and thus the firing
rates of the recorded cells, may be significantly different on differing trials.
By averaging over trials, as in the calculation of the PSTH, these differences
are smeared into mean firing rates that may not be similar to the true rates
of any single trial. A multistate model, on the other hand, since it allows
different switching times from trial to trial, can preserve these differences
and more accurately model the experimental data. Thus, in this article, we
also fit PSTHs to these data to compare the cross-validated log likelihoods.
We use the following Poisson-spiking PSTH model:

λc
t = f

(
[kc]t + hc T

γ c
t

)
t ∈ {0, . . . , T}, (4.1)

where yc
t ∼ Poisson(λc

t ) as before. The length T filter kc is fit by penalized
maximum likelihood, exactly as discussed in section 2.3.1.7

Figure 9 shows the comparison of the cross-validated log likelihoods
for the HMM and PSTH models with and without the inclusion of history
effects. Since the number of spike trains in the data set varies across record-
ing sessions and since the firing rates vary significantly across session and
tastant pairs, we normalize the cross-validated log likelihoods by dividing
by the number of cells and subtracting off the log likelihoods derived from
a homogeneous Poisson model (i.e., to capture differences in firing rates).

7In fact, this Poisson-spiking PSTH model is exactly a one-state trial-triggered model
whose parameters (which consists of the C vectors {k1, . . . , kC }) can be estimated using
the same algorithm developed for the trial-triggered model (see appendix D). Specifically,
estimation is accomplished by a single M-step (since there are no latent variables in the
model).
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1104 S. Escola, A. Fontanini, D. Katz, and L. Paninski

Figure 9: The performance of the several model classes described section 4.1,
as measured by the normalized cross-validated log likelihoods of the proposed
models. The normalization procedure is detailed in the text. While HMMs seem
to outperform PSTHs in general (although not always, as in bar 6), the inclusion
or exclusion of history effects, not the choice of HMM versus PSTH, seems to be
the primary determinant of the value of the cross-validated log likelihood for the
specific model class. Inset: The raw unnormalized results (the sum of the cross-
validated log likelihoods for each of the 424 trials in the full data set). Note
that the relative positions of the bars are preserved under the normalization
procedure.

This allows a comparison of trials across session and tastant pairs and, thus,
the calculation of meaningful error bars. Note that the relative heights of
the normalized data in the figure are unchanged when compared to the raw
data (see the figure inset).

The normalization procedure is given as follows. First, we define the
normalized log likelihoods for each trial as

LLr
norm ≡ 1

Cr

[
L
(
θ̂ r

proposed | Yr )− L
(
θ̂ r

Poisson | Yr )], (4.2)
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HMMs for Stimulus-Driven Neural Systems 1105

where Cr is the number of cells composing the data of left-out trial r , Yr con-
sists of the spike trains of trial r , and θ̂ r is the maximum likelihood solution
learned using the remaining trials from the same session and tastant pair
as trial r . The Poisson models are simple fits of homogeneous firing rates to
each cell: λc = f (bc). Then, if Ncells refers to the total number of spike trains
across every combination of trial and tastant session (3872 spike trains in
total) and if Ntrials refers to the total number of trials over every session
and tastant pair (424 trials), the sample means and sample standard errors
shown in the figure are calculated from the set of values {LLr

norm}, where
each value in the set is included in the sample Cr times:

〈LL〉 = 1
Ncells

Ntrials∑
r=1

Cr
(
LLr

norm

)
, (4.3)

and

std. err. = 1√
Ncells

√√√√ 1
Ncells − 1

Ntrials∑
r=1

Cr
(
LLr

norm − 〈LL〉)2. (4.4)

As in section 3.2, the history filters for each cell were parameterized by
the coefficients of exponential basis functions with time constants of 2, 4, and
8 ms. For simplicity, no interneuronal cross-coupling spike history terms
were included in this analysis. Since the true value of N, the number of
hidden states, is unknown when using experimental data, we calculate the
cross-validated log likelihoods for both N = 3 and N = 4 across the entire
data set and then calculate the “optimal” cross-validated log-likelihood by
summing the higher of the two values for each session and tastant pair.
The choices of three and four states are empirically driven: for N < 3, the
cross-validated log likelihood falls off significantly, while for N > 4, we
found that the system is typically not inferred to spend at least some period
of time in every state. Additionally, N = 4 was the choice that Jones et al.
(2007) made.

The figure confirms the result in Jones et al. (2007) that HMMs fit the
data better than PSTHs, but more strikingly draws attention to the impor-
tance of correctly modeling spike history effects. In terms of maximizing
the cross-validated log likelihood, whether or not to include history de-
pendence in the model far outstrips the choice of PSTH versus HMM. To
understand why history dependence seems to outweigh the importance of
using an HMM, it is helpful to consider the behavior of the log likelihood
under a simple Bernoulli model with parameter p; in our context, of course,
p would model the probability of a spike in a single time step. The Fisher
information for this model is 1

p(1−p) , which implies that the log likelihood is
much more sensitive to perturbations around p ≈ 0 than for larger values
of p. The spike history filters serve mainly to capture intrinsic neuronal re-
fractoriness and thus allow p to be correctly set to near zero values in time
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1106 S. Escola, A. Fontanini, D. Katz, and L. Paninski

bins immediately following a spike. This evidently has a larger impact on
the total log likelihood than does the choice of PSTH versus HMM (which
can be thought to modulate p around less sensitive regions of parameter
space when the true probability of spiking is far from p = 0). Thus, the mag-
nitudes in the figure are somewhat artifactual. A history-ignoring model is
clearly wrong, but not necessarily more wrong than the choice of PSTH over
HMM.

Sample history filters as determined by both the history-dependent
PSTH and HMM for one of the cells in the data set are shown in Figure 10a.
The two model classes determine nearly identical history filters, with a
large negative component at short post spike times accounting for neuronal
refractoriness. Figures 10b–10d show instantaneous firing rates for PSTHs
and HMMs with and without history dependence. Note that when history
effects are modeled, the baseline firing rates of the cell are higher than in
the history-ignoring models. This suggests that the history-ignoring mod-
els must reduce their baseline firing rates to account for the net reduction
in firing rate introduced by neuronal refractoriness (thus keeping the area
under the firing rate curves constant). However, by doing so, they fail to
capture the correct background rate.

As we noted, Jones et al. (2007), argued that HMMs offer improved
performances over PSTHs due to their ability to identify transition times.
This avoids the need to average across trials and model the data with
intermediate firing rates that may never be realized on any actual trial.
Comparing the PSTH-determined firing rates in Figure 10b with the HMM-
determined rates in Figures 10c and 10d reveals this phenomenon. In the
PSTH models, the firing rates increase smoothly during the length of the
trial, whereas they make discrete jumps when determined by HMMs.

4.2 Results from the Trial-Triggered Model. In a preliminary analysis
of these data with the trial-triggered model presented in section 2.3.1, we
found that the best setting of the smoothness penalty, as determined by the
cross-validated log likelihood, is to require that the difference between adja-
cent firing rate values (e.g., [kn]t and [kn]t+1) be essentially zero. This causes
the trial-triggered model to degenerate to a time-homogenous HMM (albeit
with spike history effects) or, in other words, almost exactly the model just
presented.8 While this degeneration is initially surprising, it does agree with

8Although cross-validation chooses a smoothness penalty for the spiking filters that
yields time homogeneous spiking, the optimal degree of smoothness for the transitioning
filters does result in time-inhomogeneous transitioning. This result indicates that the true
state dwell times are not exponentially distributed (i.e., that there is some reliability in the
transitioning behavior of the system from trial to trial). Thus, the trial-triggered model
marginally outperforms the model presented in section 4.1 by capturing this inhomo-
geneity. Further analysis with the semi-Markov transition-triggered model described in
section 2.3.2 will appear elsewhere (Escola, 2009).
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HMMs for Stimulus-Driven Neural Systems 1107

Figure 10: (a) The fitted history filters for a sample cell from a single session
and tastant pair. The filters capture the neuron’s intrinsic refractoriness and do
not vary significantly by model class. (b) The instantaneous firing rates λt from
a single trial for the same sample cell shown in a as determined by the with-
and without-history PSTH models (see equation 4.1). The dips in the lighter
trace reflect the refractoriness of the neuron following spikes due to the fitted
history filter (the darker filter in a). (c) The instantaneous firing rate and pre-
dicted hidden state sequence for the same cell from the same trial shown in
b on a four-state HMM without history dependence. The black trace is deter-
mined by weighting the state-specific firing rates by the posterior distribution
of the state sequence: 〈λt〉 =∑n p̂(qt = n)λn,t . The solid backgrounds indicate
time periods when the posterior probability of one of the states exceeds 0.5.
Note that for this particular trial from this session and tastant pair, the system
is never predicted to be in state 3. (d) As in panel c, but for a history-dependent
HMM. The neuron’s intrinsic refractoriness (determined by the lighter filter
in a) is clearly captured. Note that the firing rates and state sequences shown in
b, c, and d are for a left-out trial evaluated on models trained on the remaining
trials so as to avoid bias. The raster plot in c shows the neuron’s firing pat-
tern across the eight trials of the session and tastant pair used to create this
figure. The lighter-colored raster corresponds to the trial from which the instan-
taneous firing rates and state sequences in b, c, and d are calculated. These spike
times correspond exactly to the dips in the firing rates shown for the history-
dependent models. Although the firing rate trajectories between the HMM and
PSTH models are notably different, the accurate modeling of neuronal refrac-
toriness (by means of spike history filters) dominates the goodness of fit of the
models (see Figure 9).
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1108 S. Escola, A. Fontanini, D. Katz, and L. Paninski

the interpretation of Jones et al. (2007) as to why a multistate model more
accurately reflects the data from trial to trial than does a standard PSTH
model. Recall the argument that if a cortical computation (in this case, tas-
tant recognition) requires a neural network to progress through a sequence
of states with homogeneous state-dependent firing rates, and if the time
needed to complete each step of the sequence varies from trial to trial, then
a PSTH will smear out these state-dependent rates and result in average
firing rates that do not reflect the true rates observed on actual trials. Now
imagine if the true structure of the data is that each state n is defined not
by a set of homogeneous firing rates, but, rather, by a set of time-varying
firing rate trajectories that the cells of the network follow each time the
system visits state n. Then if the time at which the system transitions to
state n varies from trial to trial, the trial-triggered model will smear out
these state-dependent trajectories (in the same way that a standard PSTH
model will smear out state-dependent homogeneous firing rates) due to the
fact that the parameters of the trial-triggered model, the state-dependent
PSTHs, are locked to the onset time of the trial, not the onset time of the
current state. Since the trial-triggered framework is unable to account for
firing rate trajectories that evolve from the state onset times, this may ex-
plain why the cross-validated log likelihood is maximal for the setting of
the smoothness penalty that forces the model to have unchanging firing
rates.

5 Discussion

5.1 Previous HMMs Applied to Spike Trains. Our model can be con-
sidered to be a direct extension of previous applications of HMMs to spike-
train data discussed in Abeles et al. (1995), Seidemann et al. (1996), and Gat
et al. (1997). In these earlier models, the goal was to predict which task a
monkey was performing during the recording of a spike train by compar-
ing the likelihoods of the spike train tested on two different HMMs—one
trained on only trials corresponding to task 1 and the other trained on trials
corresponding to task 2. These are similar to the model recently described
in Jones et al. (2007) and discussed in detail in section 4 for predicting tas-
tants from recordings of neurons in gustatory cortex. The major difference
between these models and ours, and thus the reason that ours may be con-
sidered an extension, is the lack of an external time-varying stimulus and
spike history dependence. Thus, both the transition rates and the firing rates
in their models were time homogeneous and the size of the parameter set
significantly smaller (because rates are defined by single parameters rather
than stimulus and history filters). In the degenerate case where no stim-
ulus is present and history effects are ignored, the state-dependent firing
and transition rates are constant, and our model becomes identical to these
previous models.
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HMMs for Stimulus-Driven Neural Systems 1109

Although we specifically consider stimulus-driven sensory neurons in
this article, the model can also represent the relationship between spike
trains and time-varying behavioral variables (e.g., hand position in a motor
task). With no change to the model as presented in section 2, we could
infer the hidden state sequence and optimal “motor filters” from paired
spike train and behavior data (Kemere et al., 2008). A related approach is
developed in Wu et al. (2004) where they assume that hand position data
(location, velocity, and acceleration in two dimensions) evolve according
to an autoregressive model. The graphical representation of their model
is essentially identical to Figure 2b, except that they have arrows between
adjacent stimuli (or, in their case, position vectors) to reflect the fact that
one stimulus affects the next.9 Thus, while the focus of our work can been
seen to be the identification of the filters of the model and the recapitulation
of the hidden state sequence, these goals are closely related to models that
seek to identify either the behavior or stimulus (the two are mathematically
identical) encoded by spike trains.

5.2 Alternative Current Techniques. There has been a good deal of re-
cent work representing the stimulus-response relationship of neurons with
linear state-space models, which, since they also employ latent variables
that alter the stimulus-dependent spiking behavior, are similar in spirit
to our model. In Smith and Brown (2003), for example, there is a one-
dimensional state variable given by qt = ρqt−1 + k′Tst + βε(t), where ρ is
the correlation between adjacent time steps and βε(t) represents gaussian
noise with variance β2. We have otherwise modified their notation to match
our own. Given the state variable qt , the firing rate is λt = f (qt + b) with
bias b. This model is similar to ours in that the state dynamics are stimulus
dependent (i.e., through the filter k′), but, conditioned on the state employ
homogeneous firing rates.

Similarly, in Frank et al. (2002), Eden et al. (2004), Czanner et al. (2008),
and Kulkarni and Paninski (2007), the state-variable vectors evolve ac-
cording to homogeneous gaussian dynamics, but the state-conditioned fir-
ing rates are stimulus dependent. For example, the rates can be given by
λt = f (kt

Tst) where the stimulus filter kt itself is the state variable, or by
λt = f (kTst + gTqt), where gTqt is meant to represent some unmeasured
input current (i.e. not stimulus derived). See also Wu, Kulkarni, Hatsopou-
los, and Paninski (2009) for a related approach and Paninski et al. (2009) for
further examples.

The continuous state-space formulation has a number of potential ad-
vantages and disadvantages compared to the discrete HMM approach. On
the one hand, the state dynamics in the discrete setting are nonlinear, and

9They also remove the arrows between the stimuli and the hidden state variables,
meaning that they have homogeneous transition rates.
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1110 S. Escola, A. Fontanini, D. Katz, and L. Paninski

the state dynamics and the spiking behavior are driven by the stimulus in
a flexible, nonlinear manner. On the other hand, the number of parameters
in the discrete HMM approach depends quadratically on the number of
states (although techniques exist to limit the dimensionality of the model,
as discussed in appendix A), and the transitioning is assumed to occur on a
fast timescale (within a single time step of length dt), while in many cases,
the true transitioning behavior may be slower.

An interesting continuous state-space model that employs nonlinear
dynamics and may serve as a middle ground between the linear continuous
models and HMMs is given in Yu et al. (2006). The authors propose a
model with a stochastic recurrent nonlinear neural network as the hidden
variable. Such networks, as is known from the classic network literature,
may have multiple stable attractor states, and these could correspond to the
discrete states of an HMM. In addition, recent work in the network literature
indicates that it may be possible to design networks that implement a
desired Markov chain (Jin, 2009).

While we expect even richer models to be developed as computational
power increases and experimental evidence for multistate neurons grows,
we believe that the model presented in this article nicely complements
these other available models and offers an alternative for the analysis of the
stimulus-reponse relationship. Ultimately, however, the appropriate model
for a particular data set is dictated by the data themselves and can be de-
termined by evaluating the different approaches mentioned in this section
under the rules of model selection. By contributing to the library of point-
process models, we hope to provide an additional tool that may be the most
appropriate for certain data sets.

5.3 Additional Applications of the HMM Framework. Another inter-
esting application for which the framework developed in the article may be
appropriate involves the modeling of neural systems that have been shown
to have stimulus-specific adaptation (Blake & Merzenich, 2002; Borst, Flana-
gin, & Sompolinsky, 2005; Maravall, Petersen, Fairhall, Arabzadeh, & Di-
amond, 2007), in which optimal linear filters of neural encoding models
change with certain stimulus attributes. Such stimulus dependencies have
previously been discussed in theoretical contexts in, for example, Ahrens,
Linden, and Sahani (2008) and Hong, Lundstrom, and Fairhall (2008), but
the stimulus-dependent HMM might provide an alternative model for sim-
ilar phenomena. In such a model, the stimulus-response relationship in
each state could be thought to define, in a piecewise fashion, a portion
of the overall relationship, and the state dynamics would thus reflect the
dynamics of adaptation.

5.4 Hidden Semi-Markov Models and the Transition-Triggered
Model. The transition-triggered model introduced in section 2.3.2 falls into
the category of hidden semi-Markov models (see Sansom & Thomson, 2001,
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HMMs for Stimulus-Driven Neural Systems 1111

for an introduction to HSMMs). These models replace exponentially dis-
tributed state dwell times with dwell times drawn from other distributions
with support on the nonnegative real axis (e.g., the gamma distribution).
Thus, the models are no longer purely Markovian. That is, knowing the
current state of the system at time t does not provide the maximum possi-
ble information about future states of the system; the elapsed time in the
current state is also needed, which is analogous to keeping track of both
t and τ (where τ , as introduced in section 2.3.2, is the current depth in
the state-space cascade of Figure 3b). Although two previous papers have
presented the use of HSMMs for the analysis of spike train data (Chen
et al., 2009; Tokdar et al., 2009), the transition-triggered model differs sig-
nificantly from these in two major respects. First, by introducing the use of
an expanded state-space with NT instead of N states, we are able to adapt
the Baum-Welch algorithm to do exact inference of the hidden state distri-
bution (as described in appendix D), while previous approaches employed
Markov chain Monte Carlo (MCMC) techniques for inference. Both meth-
ods have a time complexity of O(T2) per iteration. Second, and more impor-
tant, the transition-triggered model can capture state-dependent firing-rate
dynamics via the peritransition time histograms (PTTHs), which param-
eterize the model. These PTTHs allow the spiking behavior of the model
to be dependent on the time since the most recent transition in addition
to stimulus and spike history–driven effects. Previous authors have fo-
cused on accounting for nonexponentially distributed state dwell times,
but have used traditional spiking models in each state (which, for Chen
et al., 2009, does include the modeling of history effects, but, is other-
wise determined only by the state-dependent background firing rates).
Again, further work incorporating the strengths of each approach should be
fruitful.

Appendix A: Reduced Parameter Models

If the dimensionality of the stimulus (including the augmentation for the
bias term and any history dependence) is D, then the total number of pa-
rameters corresponding to the transition and spiking filters of our model
is DN2 (with an additional N − 1 for π ). Since this number grows quadrat-
ically with N, it will become unfeasibly expensive, with respect to both
computational time and data demands, to fit the parameters of a model
with even a modest number of states and a modest stimulus dimen-
sionality. Thus, it is reasonable to consider techniques for reducing the
number of parameters and thereby control for this quadratic dependence
on N.

The obvious target for such a reduction is in the parameters that define
the transition matrix αt , since these are the ones that grow quadratically. The
total collection of transition parameters (k′

nm : ∀n,∀m �= n) can be thought to
constitute a rank 3 tensor K′ of dimensionality D × N × N − 1. Thus K′

dnm
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1112 S. Escola, A. Fontanini, D. Katz, and L. Paninski

corresponds to the dth element of the transition filter k′
nm. Ahrens, Paninski,

and Sahani (2008) developed a formalism for the approximation of a full-
rank tensor such as K′ by the sum of lower-rank tensors. In general, there
are many ways to decompose a full-rank tensor into low-rank components,
which can result in reduced parameter sets as small as D + 2N − 1 for the
most restricted case (i.e., if each dimension of K′ is considered to vary
independent of the others).

One example reduction that has a neurobiological interpretation oper-
ates on each row of the transition matrix independently. Consider K′

n ≡
(k′

n1 · · · k′
nN), the D × N − 1 matrix composed of all filters corresponding to

transitions away from state n. This matrix can be approximated as

K′
n ≈

R∑
i=1

k′
ni w

T
ni , (A.1)

where R is the desired rank of the approximation to K′
n, which is at most

the lesser of D and N − 1. Each individual transition filter k′
nm is thus a

linear combination of the R filters k′
ni with the mixing coefficients given by

the weight vectors wni . The directions in stimulus space given by the k′
ni

filters can be thought of as the set of stimulus triggers (or single trigger,
in the case that R = 1) for transitioning away from state n, while the wni

weight vectors dictate which transition is most likely given the trigger.10

While this reduced model certainly has more restricted state dynamics, it
may reasonably capture the behavior of some multistate neural systems.
The total number of parameters in this reduced model is NR(D + N − 1).

Another example is essentially the converse of the last. In this case,
we consider K′

m ≡ (k′
1m, . . . , k′

Nm), the matrix consisting of all filters corre-
sponding to transitions into state m. If the parameter reduction is performed
as before, the interpretation is that one or more triggers k′

mi (the number of
which depends on R) drive the system into state m, and the responsiveness
to a given trigger when the system is in state n depends on the weight
vectors wmi .

A caveat when using these techniques is that the ECLL maximized dur-
ing each M-step is no longer concave in the model parameters as described
in section 2.2.6. However, the ECLL is concave in the k′ filters while holding
the w weights constant and concave in the w weights while holding the k′

filters constant. Thus, the M-step may be maximized by alternatively max-
imizing the ECLL with respect to each parameter subset separately until
the procedure converges. Unfortunately, there is no way to guarantee that
the globally optimal solution for each M-step is found when using these

10Since the weights wni can be either positive or negative, each k′
ni filter actually

corresponds to two potential stimulus triggers: k′
ni and −k′

ni .
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HMMs for Stimulus-Driven Neural Systems 1113

low-rank models (i.e., local optima may exist). However, empirical results
in Ahrens, Paninski, et al. (2008) suggest that this is not a serious problem.

Besides low-rank models, other parameter-reduction techniques are pos-
sible. The simplest is to assume that some of the transitions are stimulus
independent, for which one might have some a priori biological evidence. In
this case, these filters can be removed from the model and the correspond-
ing transitions fit with homogeneous rates. Ultimately, one may even wish
to eliminate certain transitions altogether and define those rates to be zero.

A more robust and general approach with many desirable properties is
to add a prior distribution over the parameters that can control overfitting
of the data even in the case of very high-dimensional parameter spaces.
Essentially such priors reduce the number of parameters in the model from
the allowable maximum to the effective subset needed to represent the data
appropriately. Parameters that are not in this effective subset have their val-
ues dictated by their prior distributions. In this case, the learned maximum
a posteriori parameter setting is that which maximizes the product of the
prior and the likelihood rather than the likelihood alone. It is convenient to
choose priors that do not affect the concavity of the ECLL (i.e., those that
are log concave with respect to the parameters).

Appendix B: Gradient Ascent of the Expected Complete
Log Likelihood

The solution for the M-step for each iteration of EM—the parameter setting
that maximizes the ECLL—is not analytically tractable. However, given the
concavity constraints for the nonlinearities g and f , we know that a unique
solution exists, and thus that it may be found by ascending the gradient
of this likelihood. Although numerical gradient techniques are possible,
maximization is much more rapid if the gradient and the Hessian (second-
derivative matrix) have analytic solutions, which permits the application
of Newton-Raphson optimization.

Since the ECLL for our model decomposes into terms that depend on
the transition matrix αt and those that depend on the emission matrix ηt ,
we can optimize the two parameter sets independently. For the transition-
dependent terms, the ECLL decomposes further into terms corresponding
to all possible transitions that originate from the same state n (i.e., the
parameters of each row of αt can be optimized independently). Thus, we
have

〈
L(k′

nm | y, q, S)
〉
p̂(q)

∼
T∑

t=1

⎛
⎜⎝
∑
m �=n

p̂(qt−1 = n, qt = m) log g
(
k′

nm
Tst
)

− p̂(qt−1 = n) log
(

1 +∑l �=n g
(

k′
nl

Tst

)
dt
)
⎞
⎟⎠, (B.1)
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and the following gradient:

�∇(k′
nm

)= T∑
t=1

g′(k′
nm

Tst
)

×
(

p̂(qt−1 = n, qt = m)

g
(
k′

nm
Tst
) − p̂(qt−1 = n) dt

1 +∑l �=n g
(
k′

nl
Tst
)

dt

)
st.

(B.2)

The Hessian can be further broken down into two types of matrices de-
pending on whether the second derivative is taken with respect to the same
filter as that from which the first derivative was calculated (k′

nm) or with
respect to another filter corresponding to a different transition in the same
row of αt (e.g., k′

no). For the former case, we have

H(k′
nm, k′

nm)

=
T∑

t=1

⎛
⎜⎜⎜⎜⎝

p̂(qt−1 = n,qt = m)
[

g
(

k′
nm

Tst

)
g′′
(

k′
nm

Tst

)
−g′
(

k′
nm

Tst

)2]
g
(

k′
nm

Tst

)2
−

p̂(qt−1 = n) dt
[
(1+∑l �=n g(k′

nl
Tst) dt)g′′

(
k′

nm
Tst

)
−g′
(

k′
nm

Tst

)2
dt
]

(1+∑l �=n g(k′
nl

Tst) dt)2

⎞
⎟⎟⎟⎟⎠stst

T,

(B.3)

and for the latter case,

H(k′
nm, k′

no) =
T∑

t=1

p̂(qt−1 = n)g′(k′
nm

Tst
)
g′(k′

no
Tst
)

dt2(
1 +∑l �=n g

(
k′

nl
Tst
)

dt
)2 stst

T. (B.4)

Since the concavity constraints on g require that it be the exponential func-
tion (see section 2.2.6), the complexity of equations B.2, B.3, and B.4 is
considerably reduced. For example, g and g′ cancel in the gradient, and the
first term of the H(k′

nm, k′
nm) is equal to zero.

For the spiking-dependent terms in the ECLL, the parameters for spiking
in each state are again independent and can be optimized separately. Thus,
we have

〈
L(kn | y, q, S)

〉
p̂(q) ∼

T∑
t=0

p̂(qt = n)(yt log f (kn
Tst) − f (kn

Tst) dt),

(B.5)
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HMMs for Stimulus-Driven Neural Systems 1115

which yields the following gradient

�∇(kn) =
T∑

t=0

p̂(qt = n)

(
yt

f ′(kn
Tst
)

f
(
kn

Tst
) − f ′(kn

Tst
)

dt

)
st (B.6)

and Hessian

H(kn, kn) =
T∑

t=0

p̂(qt = n)

×
(

yt
f
(
kn

Tst
)

f ′′(kn
Tst
)− f ′(kn

Tst
)2

f
(
kn

Tst
)2 − f ′′(kn

Tst
)

dt

)
stst

T, (B.7)

where, again, depending on the choice of f , these formulas may simplify
considerably.

Thus, since analytic formulations for the gradient and Hessian can be
found for all parameters, Newton-Raphson optimization can be used to
solve the M-step.

Appendix C: Continuous-Time HMMs

In order to adapt the Baum-Welch algorithm to continuous time, we first
find the instantaneous values of the transition and emission matrices αt and
ηt as dt → 0, where t is now a real number rather than the time-step index.
For the off-diagonal terms of αt , we have

lim
dt→0

αnm,t = lim
dt→0

λ′
nm,t dt

1 +∑l �=n λ′
nl,tdt

= λ′
nm,tdt m �= n, (C.1)

where we use the notation limx→0 f (x) = g(x) to indicate that f (x) = g(x) +
o(x) for values of x near zero. To take the limit of the diagonal terms of αt ,
we use the fact that the Taylor expansion of f (x) = 1

1+x for small values of
x yields f (x) ≈ 1 − x:

lim
dt→0

αnn,t = lim
dt→0

1
1 +∑l �=n λ′

nl,tdt
= 1 −

∑
l �=n

λ′
nl,tdt. (C.2)
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1116 S. Escola, A. Fontanini, D. Katz, and L. Paninski

The resulting probability distribution is consistent as expected
(i.e.,

∑
m αnm,t = 1). If we define a rate matrix R as

Rnm,t =

⎧⎪⎪⎨
⎪⎪⎩

λ′
nm,t m �= n

−
∑
l �=n

λ′
nl,t m = n

, (C.3)

then αt can be written as

αt = I + Rt dt, (C.4)

where I is the identity matrix.
In the limit of small dt, there will never be more than one spike per time

step, and so the ηt matrix reduces from the description in equation 2.20 to a
simple two-column matrix (i.e., the Poisson distribution becomes a binary
distribution) as follows:

lim
dt→0

ηni,t = lim
dt→0

(λn,tdt)i e−λn,tdt

i !
i ∈ {0, 1, 2, . . .} (C.5)

becomes

lim
dt→0

ηn0,t = lim
dt→0

e−λn,tdt = 1 − λn,tdt (C.6)

and

lim
dt→0

ηn1,t = lim
dt→0

(λn,tdt) e−λn,tdt = λn,tdt, (C.7)

where we use the linear terms of the Taylor expansion to make the approxi-
mation that e−x ≈ 1 − x for values of x near 0. Consistency is again assured
(i.e., ηn0,t + ηn1,t = 1).

C.1 The E-Step. Next, we extend the forward-backward algorithm to
continuous time. From equation 2.9 and assuming that yt is the “no-spike”
emission, we have

an,t = ηn0,t

(
N∑

m=1

αmn,tam,t−dt

)

= (1 − λn,tdt)

(
N∑

m=1

αmn,tam,t−dt

)
, (C.8)
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HMMs for Stimulus-Driven Neural Systems 1117

which can be written in matrix form as

at = (I − diag(λt) dt
)
αt

Tat−dt

= (I − diag(λt) dt
)

(I + Rtdt)T at−dt

= at−dt + (Rt − diag(λt)
)T at−dtdt + o

(
dt2). (C.9)

For small dt, this yields the linear differential equation

ȧt = (Rt − diag(λt)
)T at. (C.10)

This equation holds from spike to spike (i.e., for all the dt’s when the
emission is in fact “no spike”). If ti−1 and ti are consecutive spike times,
a numerical ODE solver can be used to determine ati given ati−1 by using
equation C.10. Determining the update at the spike times is similar:

ati = (diag(λti ) dt
)
αti

Tati −dt

= (diag(λti ) dt
)

(I + Rtdt)T ati −dt

= diag(λti )ati −dtdt + o
(
dt2). (C.11)

By taking the limit as dt → 0 and dropping the dt multiplier,11 we get the
spike time update as

ati+ = diag(λti )ati− , (C.12)

where ati− is the forward probability vector before the spike (i.e., the result
of the integration from ti−1 to ti using equation C.10) and ati+ is the vector
after the spike. Finally, a0 is initialized as π .

The backward probabilities are adapted to continuous time in a similar
manner. From equation 2.13 and assuming the no-spike emission,

bn,t−dt =
N∑

m=1

αnm,tηm0,tbm,t

=
N∑

m=1

αnm,t(1 − λn,tdt)bm,t, (C.13)

11In a continuous-time model, the probability of any given spike train with specific
spike times is zero. Thus, we discard these zero multipliers since they are independent
of the model parameters and merely add a constant (albeit infinite) component to the log
likelihood.
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1118 S. Escola, A. Fontanini, D. Katz, and L. Paninski

which, in matrix form, becomes

bt−dt = αt
(
I − diag(λt) dt

)
bt

= (I + Rtdt)
(
I − diag(λt) dt

)
bt

= bt − (diag(λt) − Rt
)

btdt + o
(
dt2), (C.14)

yielding the differential equation

ḃt = (diag(λt) − Rt
)

bt. (C.15)

The spike time update follows exactly as before:

bti − = diag(λti )bti +. (C.16)

The initialization of the backward probabilities remains unchanged from
equation 2.12: bT = 1.

As in the discrete-time case, the log likelihood is calculated as

L(θ | y, S) ≡ log p(y | S, θ ) = log
N∑

n=1

an,T , (C.17)

and the individual marginal distributions of p̂(q) are given by equa-
tion 2.14:

p̂(qt = n) = an,tbn,t

p(y | S, θ )
. (C.18)

Note that although the forward and backward probabilities are discontinu-
ous at the spike times, the marginal probabilities are continuous at all times
t. It is clear from equation C.18 that the marginal probabilities are contin-
uous between spike times (since the forward and backward probabilities
are), while at the spike times, we have

p̂(qti − = n) = an,ti −bn,ti −
p(y | S, θ )

= an,ti −λn,ti bn,ti +
p(y | S, θ)

= an,ti +bn,ti +
p(y | S, θ )

= p̂(qti + = n).

(C.19)

Rather than using the consecutive-pairwise marginals as in the discrete-
time case, in the continuous-time framework, expected instantaneous
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HMMs for Stimulus-Driven Neural Systems 1119

transition rates rn→m,t given y, S, and θ are needed:

rn→m,t = lim
dt→0

p(qt = m | qt−dt = n, y, S, θ )
dt

= lim
dt→0

p(qt = m, qt−dt = n | y, S, θ)
p(qt−dt = n | y, S, θ) dt

= lim
dt→0

��an,t−dtαnm,tηmyt ,tbm,t

���p(y|S,θ)

��an,t−dtbn,t−dt

���p(y|S,θ) dt

= lim
dt→0

αnm,tηmyt ,tbm,t

bn,t−dtdt
, (C.20)

where we substitute the single and pairwise marginals with equations 2.14
and 2.15. Notice that the forward probability an,t−dt cancels out of equa-
tion C.20. This reflects the Markovian nature of the model. The expected
rate rn→m,t is the transition rate to m assuming that the current state is n.
The Markov assumption states that given the present, the past and future
are independent. In other words, assuming some assignment of the current
state, the forward probabilities (which reflect the past) do not affect the
expected transition rates (which reflect predictions about the future). At the
nonspike times, equation C.20 becomes

rn→m,t = lim
dt→0

λ′
nm,t��dt(1 −���λm,tdt)bm,t

bn,t−dt��dt

= λ′
nm,t · bm,t

bn,t
, (C.21)

and at spike times,

rn→m,ti − = lim
dt→0

λ′
nm,ti��dt · λm,ti dt · bm,ti +

bn,ti −��dt

= lim
dt→0

λ′
nm,ti · λm,ti��dt · bm,ti +

λn,ti��dt · bn,ti +

= rn→m,ti + · λm,ti

λn,ti
. (C.22)

equations C.21 and C.22 have an intuitive explanation. Between spikes,
rn→m,t (the expected rate of transition from state n to state m) is equal to
λ′

nm,t (the rate given by the stimulus and the current parameter settings of
the model) scaled by the ratio of the probabilities of the future given that
the current state is m versus n. In other words, if the remainder of the spike
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1120 S. Escola, A. Fontanini, D. Katz, and L. Paninski

train can be better explained by having the neuron in state m than in state
n at time t, the rate should be increased beyond λ′

nm,t ; otherwise, it should
be reduced. At the spike times, the additional information of knowing that
a spike occurred further scales the expected transition rate by the ratio of
the firing rates between the two states, which is equal to the ratio of the
probabilities of firing in each state. As is obvious from equations C.21 and
C.22, the expected transition rates rn→m,t are discontinuous at the spike
times where they jump by a factor of λm,ti

λn,ti
but continuous between spikes.

C.2 The M-Step. In order to maximize the parameters during the M-
step, the ECLL must be modified to the continuous-time framework. The
update of the initial state distribution π is unchanged (see equation 2.19).
As with the discrete-time case, we can consider the αt and ηt dependent
terms separately. From equation 2.18, we have

T∑
t=dt

N∑
n=1

N∑
m=1

p̂(qt−dt = n, qt = m) log αnm,t

=
T∑

t=dt

N∑
n=1

⎛
⎜⎝
∑
m �=n

p̂(qt−dt = n, qt = m) log
(
λ′

nm,tdt
)

+ p̂(qt−dt = n, qt = n) log
(

1 −∑l �=n λ′
nl,tdt

)
⎞
⎟⎠

=
T∑

t=dt

N∑
n=1

⎛
⎜⎜⎝
∑
m �=n

p̂(qt−dt = n)rn→m,tdt(log λ′
nm,t +���log dt)

− p̂(qt−dt = n)
∑
l �=n

λ′
nl,tdt

⎞
⎟⎟⎠

∼
N∑

n=1

∑
m �=n

∫ T

0
p̂(qt = n)

(
rn→m,t log λ′

nm,t − λ′
nm,t

)
dt (C.23)

and

T∑
t=dt

N∑
n=1

p̂(qt = n) log ηnyt,t

=
N∑

n=1

⎛
⎜⎜⎝
∑

i∈spikes

p̂(qti = n) log (λn,ti��dt)

+
∑

i /∈spikes

p̂(qti = n) log (1 − λn,ti dt)

⎞
⎟⎟⎠

∼
N∑

n=1

⎛
⎝ ∑

i∈spikes

p̂(qti = n) log λn,ti −
∫ T

0
p̂(qt = n)λn,tdt

⎞
⎠. (C.24)
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HMMs for Stimulus-Driven Neural Systems 1121

The integrals in equations C.23 and C.24 have to be evaluated piecewise
from spike time to spike time since the probabilities are not smooth at these
times. In order to capitalize on the increased computational efficiency of the
continuous-time framework, it would not be desirable to need to calculate
the marginal posterior probabilities and expected instantaneous transition
rates at times for which they were not calculated and stored during the
E-step. If the numerical integration procedure calls for values at unstored
times, they can be approximated by linearly interpolating the values for the
two closest stored times.

As with the discrete-time case,
〈
L(θ | y, q, S)

〉
p̂(q) is maximized by gradi-

ent ascent. To guarantee the concavity of the ECLL, the constraints on the
spiking nonlinearity remain the same as before ( f must be convex and log
concave) since λn,t = f

(
kn

Tst
)

and each λn,t enters into equation C.24 as a
log and a negative. A desirable feature of the continuous-time model is that
these constraints are also enough to guarantee concavity with respect to g
as opposed to the more stringent requirement from the discrete-time case
that g had to be exponential. Equation C.23 depends on g only through
log λ′

nm,t and −λ′
nm,t , where λ′

nm,t = g
(
k′

nm
Tst
)
.

Appendix D: The Trial-Triggered Model

The trial-triggered model is a hybrid HMM–PSTH for the modeling of
the evolution of the firing rates of cells recorded from a multistate neural
network in the absence of an external time-varying stimulus. This hybrid
model can be cast in the framework developed in this article by defining
the “stimulus” st to be the tth standard basis vector in R

T , where T is the
number of time steps in the trial. The spiking and transitioning filters kn

and k′
nm are thus length T , and each of the filter elements is used only once

(i.e., the dot products kTst yield the tth filter elements [k]t thus giving the
model as defined in section 2.3.1). The vectors f (kn) and g(k′

nm) are thus
PSTHs for spiking in state n and for transitioning from state n to state m,
respectively.

This model is guaranteed to overfit in the maximum likelihood setting,
but we can combat this issue by using smoothness priors for each of the
spiking and transitioning filters:

p(kc
n) ∝ exp

{
− 1

2σ 2dt

T−1∑
t=0

([
kc

n

]
t+1 − [kc

n

]
t

)2
}

(D.1)

and

p
(
k′

nm

)∝ exp

{
− 1

2σ ′2dt

T−1∑
t=1

([
k′

nm

]
t+1 − [k′

nm

]
t

)2
}

, (D.2)
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1122 S. Escola, A. Fontanini, D. Katz, and L. Paninski

where σ and σ ′ are hyperparameters determining the degree of smoothness
required by the spiking and transitioning filters, respectively.

Learning the parameters of this smoothed model involves maximizing
the log posterior distribution of the parameters given the data to find the
maximum a posteriori (θMAP), rather than the maximum likelihood, solu-
tion:

θMAP = arg max
θ

[
log p(θ | Y)

]

= arg max
θ

[
log p(Y | θ ) + log p(θ )

]

= arg max
θ

[
L(θ | Y) +

∑
n,c

log p(kc
n) +

∑
n,m

log p
(
k′

nm

)]
. (D.3)

One advantage of the maximum a posteriori setting is that regardless of the
choice of the hyperparameters σ and σ ′, θMAP is guaranteed to converge to
the true parameters of the system with sufficient data (i.e., the likelihood
term in equation D.3 will dominate the terms corresponding to the prior dis-
tributions). This is in contrast to other smoothing techniques (e.g., binning
or using a gaussian filter), which will always coarsen the estimate despite
the quantity of data. With fewer data points, however, as in the data set ana-
lyzed in section 4, the optimal values of σ and σ ′ can be found by searching
over these hyperparameters and finding the peak of the cross-validated log
likelihood.

During the E-step, the first term of equation D.3 (the log likelihood) is
computed using the forward-backward algorithm exactly as in the standard
HMM setting, and the other terms are computed using the definitions of
the priors in equations D.1 and D.2. The M-step is modified slightly in that
the maximization occurs over the expected complete log posterior (ECLP)
rather than over the ECLL. The ECLP is given as

〈
log p(θ | Y, q)

〉
p̂(q) ∼

〈
log p(Y, q | θ ) + log p(θ )

〉
p̂(q)

∼ 〈L(θ | Y, q)
〉
p̂(q) + log p(θ ). (D.4)

In other words, the sum of the ECLL (given by equation 2.44) and the
log prior gives the ECLP. Note that from the definitions given in equa-
tions D.1 and D.2, the log priors are quadratic forms and thus have triv-
ial gradients and Hessians, which can be simply summed to those of the
ECLL (see appendix B) to get the gradients and Hessians of the ECLP as
needed to perform the parameter updates for each M-step. As before, the
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HMMs for Stimulus-Driven Neural Systems 1123

Newton-Raphson method is used to solve the M-step:

ki+1 = ki − H
(
ki , ki)−1 �∇(ki), (D.5)

where �∇(ki ) and H(ki , ki ) are the gradient and Hessian of the ECLP evalu-
ated at the current parameter setting ki . Since the dimension of k is T and
given that the complexity of the inversion of a T × T matrix is O(T3), it
would appear that the convenient linear dependence on T is no longer pre-
served for the trial-triggered model. However, due to the decomposition of
the ECLL into independent state- and cell-specific terms (see equation 2.44)
and due to the nature of the smoothness priors (see equations D.1 and D.2),
the Hessian of the ECLP is a sparse, banded matrix12 for which O(T) algo-
rithms exist to perform the update given in equation D.5 (Paninski et al.,
2009).

As with the other models discussed in this article, the trial-triggered
model can also account for spike history effects. Assuming that the transi-
tioning behavior is not history dependent and that the history dependence
of the spiking behavior is not state dependent—reasonable assumptions
that limit the number of parameters required for the inclusion of history
effects—then the full descriptions of the transitioning and firing rates be-
come

λ′
nm,t = g([k′

nm]t) (D.6)

and

λc
n,t = f

([
kc

n

]
t + hT

nγ c
t

)
, (D.7)

where hn and γ c
t are defined as in section 2.2.2.

Appendix E: The Transition-Triggered Model

The transition-triggered model solves the limitation of the trial-triggered
model (see appendix D) by decoupling the evolution of the state-dependent
firing rates from the time of the onset of the trial as illustrated in Figure 3b.
Specifically, when the system is in state nτ (the τ th state in the nth row of
states), the restricted state-space connectivity permits transitions to the next
state only in the current row of states (nτ+1) or to one of the start states m0,
where m may equal n. This topology decouples the time-step t from the

12Specifically, the sub-Hessians corresponding to the transition filter updates can be
shown to have N unique bands (the main diagonal, N − 1 upper subdiagonals, and N − 1
symmetric lower subdiagonals) where N is the number of states, while the sub-Hessians
corresponding to the spiking filters prove to be tridiagonal.
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1124 S. Escola, A. Fontanini, D. Katz, and L. Paninski

depth in the state-space cascade τ and thus permits the state-dependent
filters to evolve from the time of the last “state” transition (i.e., transition to
the begin of a row of states). These filters can be thought of as peritransition
time histograms (PTTHs) rather than PSTHs, as in the trial-triggered case.
The spiking and transitioning rates are thus given as

λ′
nτ m0

= g
(
k ′

nτ m0

)
(E.1)

and

λc
nτ ,t = f

(
kc

nτ
+ hT

nγ c
t

)
, (E.2)

where, unlike in the trial-triggered model, the state-specific firing rates are
no longer time homogeneous.

Learning the parameters of the transition-triggered model is more diffi-
cult than learning those of the other models discussed in this article. Unlike
in the trial-triggered case, there is no formulation of the model that uses
some kind of “stimulus” as an indicator to select the appropriate filter ele-
ments at each time step, and so the full NT-state system must be considered,
albeit with certain simplifications due to the restricted structure of the tran-
sition matrix. First, we note that the forward recursion (see equation 2.9) has
different expressions for states with τ = 0 and τ > 0. In the latter case, any
state nτ for τ > 0 can have been reached only on time-step t if the system
was in state nτ−1 at time t − 1 (as is clear from the state-space connectivity
given in Figure 3b). Thus, for these states, the forward recursion simplifies
as

anτ ,t = anτ−1,t−1αnτ−1nτ
ηnτ yt 0 < τ ≤ t, (E.3)

where, in the multicell setting, ηnτ yt will become
∏

c ηc
nτ yc

t
. The states with

τ = 0, on the other hand, can have been reached on time step t from any
state with τ < t, which follows from the fact that the farthest depth into
the state-space cascade that is achievable t − 1 time steps following the trial
onset is τ − 1. For these states, the forward recursion becomes

an0,t =
(

N∑
m=1

∑
τ<t

amτ ,t−1αmτ n0

)
ηnτ yt . (E.4)

As always, the likelihood is computed from the forward probabilities at
time T :

p(Y | θ ) =
∑
n,τ

anτ ,T . (E.5)
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HMMs for Stimulus-Driven Neural Systems 1125

Note that the computational complexity of the forward recursion as well as
the storage requirement for the forward probabilities are now both O(T2),
whereas they had previously been O(T). This significant loss in efficiency is
the cost of a transition-triggered model. In order to have the behavior of the
system triggered on the transition times rather than the elapsed time since
the trial onset, the forward recursion must keep track of both the transition
index τ and the trial index t, thus squaring the complexity (although it
would be possible to reduce this quadratic dependence if the maximum
value of τ were restricted to be less than T).

The backward recursion is updated as

bnτ ,t =
[

N∑
m=1

αnτ m0ηm0 yt+1 bm0,t+1

]
+ αnτ nτ+1ηnτ+1 yt+1 bnτ+1,t+1, (E.6)

where, as with the forward recursion, transitions to the start states in the
first column of Figure 3b must be treated differently from the transitions
along the rows of the state-space. The sum in equation E.6 deals with the
former set of transitions (where all states m0 are reachable from any state
nτ ), while the final term deals with the latter transitions (where only state
nτ+1 is reachable from nτ ). Again, the time and storage complexities of this
recursion are O(T2).

The single marginal probabilities of p(q | Y, θ ) are calculated as before
(see equation 2.14):

p̂(qt = nτ ) = anτ ,tbnτ ,t

p(Y | θ )
. (E.7)

However, only the following subset of the consecutive-pairwise marginals
is needed, as will be shown:

p̂(qt = nτ , qt+1 = m0) = anτ ,tαnτ m0ηm0 yt+1 bm0,t+1

p(Y | θ )
. (E.8)

Again the complexity of the calculations of the marginals is O(T2).
The M-step is also somewhat updated from before. The transition-

dependent term of the ECLL (see equation 2.37) becomes

R∑
r=1

T∑
t=1

〈
log αqr

t−1qr
t

〉
p̂(qr )

∼
R∑

r=1

T∑
t=1

N∑
n=1

t−1∑
τ=0

⎛
⎜⎝

N∑
m=1

p̂(qr
t−1 = nτ , qr

t = m0) log λ′
nτ m0

− p̂(qr
t−1 = nτ ) log

(
1 +∑l λ′

nτ l0
dt
)
⎞
⎟⎠, (E.9)
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1126 S. Escola, A. Fontanini, D. Katz, and L. Paninski

where the sum over τ reflects the fact that the depth in the state-space τ

can never exceed time-step t, and the sum over m the fact that transitions
to the start states are parameterized (e.g., k ′

nτ m0
parameterizes the transition

from nτ to m0). Recall that the transitions along the rows of the state-space
(e.g., from nτ to nτ+1) are not parameterized and are determined by the
residual probability (see equation 2.33). By rearranging the sums of t and
τ , the expression takes a more convenient form:

R∑
r=1

T∑
t=1

〈
log αqr

t−1qr
t

〉
p̂(qr )

∼
N∑

n=1

R∑
r=1

T−1∑
τ=0

⎛
⎜⎜⎜⎜⎝

N∑
m=1

[
T∑

t=τ+1

p̂(qr
t−1 = nτ , qr

t = m0)

]
log λ′

nτ m0

−
[

T∑
t=τ+1

p̂(qr
t−1 = nτ )

]
log
(
1 +∑l λ′

nτ lo
dt
)

⎞
⎟⎟⎟⎟⎠.

(E.10)

It is clear from equation E.10 that the only consecutive-pairwise marginals
that are needed are those involving transitions to the first column of states
(given by equation E.8). Furthermore, by moving the sum over time-step
t to be the inner sum, it is clear that the consecutive-pairwise marginals
themselves are not needed, but rather the sum over t of these marginals
for the transitions between every state nτ and each of the states in the first
column m0. Although computation of these summed pairwise marginals
still requiresO(T2) time, the storage requirement is onlyO(T). However, the
emission-dependent term shows that the full O(T2) set of single marginals
still needs to be stored for the update of the spiking parameters:

R∑
r=1

C∑
c=1

T∑
t=0

〈
log ηc

qr
t yc,r

t ,t

〉
p̂(qr )

=
R∑

r=1

C∑
c=1

T∑
t=0

N∑
n=1

∑
τ≤t

p̂(qr
t = nτ ) log

(
λc

nτ ,tdt
)yc,r

t e−λc
nτ ,tdt

yc,r
t !

∼
C∑

c=1

R∑
r=1

T∑
t=0

N∑
n=1

∑
τ≤t

p̂(qr
t = nτ )

(
yc,r

t log λc
nτ ,t − λc

nτ ,tdt
)
. (E.11)

Note that this expression is unchanged from equation 2.38 except for the
additional sums.

Newton-Raphson optimization can again be employed to update the
parameters of the transition-triggered model, as the gradient and Hessian
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of the ECLL are essentially unchanged from the standard setting (albeit
with the additional sums present in equations E.10 and E.11). As with
the trial-triggered model, the inversion of the Hessian mandated by the
optimization procedure can be computed efficiently (i.e., in O(T) time)
by exploiting the banded structure of the Hessian. Since the computation
required to construct the Hessian during each M-step is O(T2), it is clear
that the Newton-Raphson update itself is not a computational bottleneck in
this setting. Note that as with the trial-triggered model, smoothness priors
(see equations D.1 and D.2) are employed to prevent overfitting.

Appendix F: Concavity Constraints for the Bernoulli
Spiking Model

If the emission model is modified to guarantee that no more than one
spike occurs per time step, then it is necessary to reevaluate the sufficient
conditions for concavity of the M-step. Recall from equation 2.38 that the
nonlinearity f entered into the ECLL as both its logarithm and its negative.
Therefore, the sufficient and necessary conditions for guaranteeing concav-
ity were that log f needed to be concave and f needed to be convex. In a
Bernoulli spiking model, the ηt term in equation 2.36 becomes

〈
L(θ | y, q, S)

〉
p̂(q) ∼

T∑
t=0

N∑
n=1

p̂(qt = n) log ηnyt ,t

∼
N∑

n=1

⎛
⎜⎜⎝
∑

t∈spikes

p̂(qt = n) log p(yt = 1 | qt = n)

+
∑

t /∈spikes

p̂(qt = n) log p(yt = 0 | qt = n)

⎞
⎟⎟⎠.

(F.1)

The actual dependence of equation F.1 on the nonlinearity f is determined
by the definition of p(yt = 0) and p(yt = 1). One reasonable choice is to
have the probability of not spiking be the same as in the Poisson spiking
model. The probability of having a spike is then equal to the probability
of one or more spikes in the Poisson model. This model has the desirable
property that in the limit of small dt, the Bernoulli formulation converges
to the Poisson formulation. Thus, we have

p(yt = 0 | qt = n) ≡ Poisson(0 | λn,tdt) = e− f (kn
Tst ) dt (F.2)

and

p(yt = 1 | qt = n) ≡
∞∑

i=1

Poisson(i | λn,tdt) = 1 − e− f (kn
Tst ) dt, (F.3)
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where we have used equation 2.34 and the fact that the probabilities must
sum to 1. Substituting these definitions into equation F.1 gives

〈
L(θ | y, q, S)

〉
p̂(q) ∼

N∑
n=1

∑
t∈spikes

p̂(qt = n) log (1 − e− f (kn
Tst ) dt)

−
∑

t /∈spikes

p̂(qt = n) f
(
kn

Tst
)

dt.

(F.4)

To guarantee the concavity of the M-step, both terms in equation F.4
must be concave in kn. The second term involves a negative f as before
in equation 2.38, and so f must be convex. If we assume that the other
original constraint also holds—that log f is concave—then we can show
that the first term will also be concave. From the concavity of log f , we
have

(log f )′′ ≤ 0(
f ′

f

)′
≤ 0

f f ′′ − ( f ′)2

f 2 ≤ 0

−( f ′)2 ≤ − f f ′′. (F.5)

The second derivative of the first term in equation F.4 can be expanded as
follows:

(
log (1 − e− f dt)

)′′ =( e− f dt f ′dt
1 − e− f dt

)′

=
(

f ′dt
e f dt − 1

)′

= (e f dt − 1) f ′′dt − e f dt( f ′)2dt2

(e f dt − 1)2

≤ (e f dt − 1) f ′′dt − e f dt f f ′′dt2

(e f dt − 1)2

= e f dt f ′′dt(1 − e− f dt − f dt)
(e f dt − 1)2

≤ 0, (F.6)
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where we have used the result from equation F.5, the convexity of f
(i.e., f ′′ ≥ 0), and the fact that 1 − eu + u ≤ 0 for all values of u. Thus, we
have shown that for the Bernoulli spiking model as defined by equations F.2
and F.3, convexity and log concavity of the nonlinearity f are sufficient con-
ditions to guarantee the concavity of the M-step.

F.1 Gradient and Hessian of the Bernoulli Spiking Model. The analytic
formulas for the gradient and Hessian required to maximize the ECLL
during each M-step must be redetermined for the Bernoulli spiking model.
From equation F.4, we derive the following gradient,

�∇(kn) =
∑

t∈spikes

p̂(qt = n)
f ′(kn

Tst
)

dt

e f (kn
Tst ) dt − 1

st −
∑

t /∈spikes

p̂(qt = n) f ′(kn
Tst
)

dt st,

(F.7)

and Hessian,

H(kn, kn) =
∑

t∈spikes

p̂(qt = n)

× (e f (kn
Tst ) dt−1) f ′′(kn

Tst) dt−e f (kn
Tst ) dt[ f ′(kn

Tst) dt]2

(e f (kn
Tst ) dt − 1)2

stst
T

−
∑

t /∈spikes

p̂(qt = n) f ′′(kn
Tst) dt stst

T. (F.8)
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